基于神经网络的自然语言对话主题识别

K. Lagus, Jukka Kuusisto
{"title":"基于神经网络的自然语言对话主题识别","authors":"K. Lagus, Jukka Kuusisto","doi":"10.3115/1118121.1118135","DOIUrl":null,"url":null,"abstract":"In human-computer interaction systems using natural language, the recognition of the topic from user's utterances is an important task. We examine two different perspectives to the problem of topic analysis needed for carrying out a successful dialogue. First, we apply self-organized document maps for modeling the broader subject of discourse based on the occurrence of content words in the dialogue context. On a Finnish corpus of 57 dialogues the method is shown to work well for recognizing subjects of longer dialogue segments, whereas for individual utterances the subject recognition history should perhaps be taken into account. Second, we attempt to identify topically relevant words in the utterances and thus locate the old information ('topic words') and new information ('focus words'). For this we define a probabilistic model and compare different methods for model parameter estimation on a corpus of 189 dialogues. Moreover, the utilization of information regarding the position of the word in the utterance is found to improve the results.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Topic Identification in Natural Language Dialogues Using Neural Networks\",\"authors\":\"K. Lagus, Jukka Kuusisto\",\"doi\":\"10.3115/1118121.1118135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In human-computer interaction systems using natural language, the recognition of the topic from user's utterances is an important task. We examine two different perspectives to the problem of topic analysis needed for carrying out a successful dialogue. First, we apply self-organized document maps for modeling the broader subject of discourse based on the occurrence of content words in the dialogue context. On a Finnish corpus of 57 dialogues the method is shown to work well for recognizing subjects of longer dialogue segments, whereas for individual utterances the subject recognition history should perhaps be taken into account. Second, we attempt to identify topically relevant words in the utterances and thus locate the old information ('topic words') and new information ('focus words'). For this we define a probabilistic model and compare different methods for model parameter estimation on a corpus of 189 dialogues. Moreover, the utilization of information regarding the position of the word in the utterance is found to improve the results.\",\"PeriodicalId\":426429,\"journal\":{\"name\":\"SIGDIAL Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGDIAL Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1118121.1118135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1118121.1118135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

在使用自然语言的人机交互系统中,从用户的话语中识别话题是一项重要的任务。我们研究了两种不同的观点,以进行成功对话所需的主题分析问题。首先,我们应用自组织文档映射,基于对话上下文中内容词的出现,对更广泛的话语主题进行建模。在芬兰语的57个对话语料库中,该方法被证明可以很好地识别较长对话片段的主题,而对于单个话语,可能应该考虑主题识别历史。其次,我们试图识别话语中的话题相关词,从而定位旧信息(“主题词”)和新信息(“焦点词”)。为此,我们定义了一个概率模型,并在189个对话的语料库上比较了模型参数估计的不同方法。此外,利用词语在话语中的位置信息可以改善结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topic Identification in Natural Language Dialogues Using Neural Networks
In human-computer interaction systems using natural language, the recognition of the topic from user's utterances is an important task. We examine two different perspectives to the problem of topic analysis needed for carrying out a successful dialogue. First, we apply self-organized document maps for modeling the broader subject of discourse based on the occurrence of content words in the dialogue context. On a Finnish corpus of 57 dialogues the method is shown to work well for recognizing subjects of longer dialogue segments, whereas for individual utterances the subject recognition history should perhaps be taken into account. Second, we attempt to identify topically relevant words in the utterances and thus locate the old information ('topic words') and new information ('focus words'). For this we define a probabilistic model and compare different methods for model parameter estimation on a corpus of 189 dialogues. Moreover, the utilization of information regarding the position of the word in the utterance is found to improve the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Information State-Based Dialogue Manager for Call for Fire Dialogues A computational model of multi-modal grounding for human robot interaction Classification of Discourse Coherence Relations: An Exploratory Study using Multiple Knowledge Sources Balancing Conflicting Factors in Argument Interpretation Semantic and Pragmatic Presupposition in Discourse Representation Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1