采用电阻式SFCL和新型无功电流注入控制器增强风电场PMSG的故障穿越能力

Davood Kheibargir, R. Zeinali, Seyed Mohsen Aliabadi
{"title":"采用电阻式SFCL和新型无功电流注入控制器增强风电场PMSG的故障穿越能力","authors":"Davood Kheibargir, R. Zeinali, Seyed Mohsen Aliabadi","doi":"10.1109/PSC49016.2019.9081566","DOIUrl":null,"url":null,"abstract":"This paper presents the study to use the effect of the resistive superconducting fault current limiter (RSFCL) on a wind power plant rated at 50 MW, which can provide an augmentation for the fault ride-through (FRT) capability. The wind power plant consists of the number of wind turbines that each one based on a permanent magnet synchronous generator (PMSG) and a back-to-back full rating converter. The RSFCL by limiting the fault current can decrease the reduction of voltage at the point of common coupling (PCC). It can be improved by adding a new control strategy of the reactive current controller based on the grid code requirements to the grid-side voltage source converter (VSC). Moreover, because of increasing voltage, the active power output of the wind power plant increases, therefore, it can diminish the dc-link voltage in faulty conditions. In this paper, both the thermal and electrical properties of high-temperature superconductor (HTS) are considered. In addition, its modeling coming from the electrical field is done with “Power Law.”","PeriodicalId":359817,"journal":{"name":"2019 International Power System Conference (PSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Augmentation of fault ride-through capability of PMSG in a wind power plant using resistive SFCL and a new reactive current injection controller\",\"authors\":\"Davood Kheibargir, R. Zeinali, Seyed Mohsen Aliabadi\",\"doi\":\"10.1109/PSC49016.2019.9081566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the study to use the effect of the resistive superconducting fault current limiter (RSFCL) on a wind power plant rated at 50 MW, which can provide an augmentation for the fault ride-through (FRT) capability. The wind power plant consists of the number of wind turbines that each one based on a permanent magnet synchronous generator (PMSG) and a back-to-back full rating converter. The RSFCL by limiting the fault current can decrease the reduction of voltage at the point of common coupling (PCC). It can be improved by adding a new control strategy of the reactive current controller based on the grid code requirements to the grid-side voltage source converter (VSC). Moreover, because of increasing voltage, the active power output of the wind power plant increases, therefore, it can diminish the dc-link voltage in faulty conditions. In this paper, both the thermal and electrical properties of high-temperature superconductor (HTS) are considered. In addition, its modeling coming from the electrical field is done with “Power Law.”\",\"PeriodicalId\":359817,\"journal\":{\"name\":\"2019 International Power System Conference (PSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Power System Conference (PSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PSC49016.2019.9081566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Power System Conference (PSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSC49016.2019.9081566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了电阻式超导故障限流器(RSFCL)在额定功率为50mw的风力发电厂上的应用效果,以提高其故障通过能力。风力发电厂由多个风力涡轮机组成,每个风力涡轮机都基于一个永磁同步发电机(PMSG)和一个背靠背的全额定变流器。RSFCL通过限制故障电流来减小共耦合点电压的降低。通过在电网侧电压源变换器(VSC)中加入一种基于电网规范要求的无功电流控制器的新控制策略,可以对其进行改进。另外,由于电压的升高,风电场的有功输出也随之增加,因此在故障情况下可以降低直流电压。本文对高温超导体(HTS)的热学和电学性质进行了研究。此外,其来自电场的建模是用“幂律”来完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Augmentation of fault ride-through capability of PMSG in a wind power plant using resistive SFCL and a new reactive current injection controller
This paper presents the study to use the effect of the resistive superconducting fault current limiter (RSFCL) on a wind power plant rated at 50 MW, which can provide an augmentation for the fault ride-through (FRT) capability. The wind power plant consists of the number of wind turbines that each one based on a permanent magnet synchronous generator (PMSG) and a back-to-back full rating converter. The RSFCL by limiting the fault current can decrease the reduction of voltage at the point of common coupling (PCC). It can be improved by adding a new control strategy of the reactive current controller based on the grid code requirements to the grid-side voltage source converter (VSC). Moreover, because of increasing voltage, the active power output of the wind power plant increases, therefore, it can diminish the dc-link voltage in faulty conditions. In this paper, both the thermal and electrical properties of high-temperature superconductor (HTS) are considered. In addition, its modeling coming from the electrical field is done with “Power Law.”
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of PFC Improvement and THD Reduction Achieved by PFC-based Zeta Converter and PWM-Rectifier Optimal Planning of Smart Electric Vehicle Parking lot in the Active Distribution Network Improvement in Voltage Recovery Delay Phenomenon Caused by Air Conditioners Specific Performance Small Signal Modeling and Controller Design of Integrated Bidirectional Converter for PHEVs Small signal stability improvement via coordination of PSS's and SOFC power conditioner by PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1