Gang Yao, F. Chao, Hualin Zeng, Minghui Shi, Min Jiang, Changle Zhou
{"title":"将分类器多样性评价与基于特征选择的分类器集成约简相结合","authors":"Gang Yao, F. Chao, Hualin Zeng, Minghui Shi, Min Jiang, Changle Zhou","doi":"10.1109/UKCI.2014.6930156","DOIUrl":null,"url":null,"abstract":"Classifier ensembles improve the performance of single classifier system. However, a classifier ensemble with too many classifiers may occupy a large number of computational time. This paper proposes a new ensemble subset evaluation method that integrates classifier diversity measures into a classifier ensemble reduction framework. The approach is implemented by using three conventional diversity algorithms and one new developed diversity measure method to calculate the diversity's merits within the classifier ensemble reduction framework. The subset evaluation method is demonstrated by the experimental data: the method not only can meet the requirements of high accuracy rate and fewer size, but also its running time is greatly shortened. When the accuracy requirements are not very strict, but the the running time requirements is more stringent, the proposed method is a good choice.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Integrate classifier diversity evaluation to feature selection based classifier ensemble reduction\",\"authors\":\"Gang Yao, F. Chao, Hualin Zeng, Minghui Shi, Min Jiang, Changle Zhou\",\"doi\":\"10.1109/UKCI.2014.6930156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifier ensembles improve the performance of single classifier system. However, a classifier ensemble with too many classifiers may occupy a large number of computational time. This paper proposes a new ensemble subset evaluation method that integrates classifier diversity measures into a classifier ensemble reduction framework. The approach is implemented by using three conventional diversity algorithms and one new developed diversity measure method to calculate the diversity's merits within the classifier ensemble reduction framework. The subset evaluation method is demonstrated by the experimental data: the method not only can meet the requirements of high accuracy rate and fewer size, but also its running time is greatly shortened. When the accuracy requirements are not very strict, but the the running time requirements is more stringent, the proposed method is a good choice.\",\"PeriodicalId\":315044,\"journal\":{\"name\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2014.6930156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrate classifier diversity evaluation to feature selection based classifier ensemble reduction
Classifier ensembles improve the performance of single classifier system. However, a classifier ensemble with too many classifiers may occupy a large number of computational time. This paper proposes a new ensemble subset evaluation method that integrates classifier diversity measures into a classifier ensemble reduction framework. The approach is implemented by using three conventional diversity algorithms and one new developed diversity measure method to calculate the diversity's merits within the classifier ensemble reduction framework. The subset evaluation method is demonstrated by the experimental data: the method not only can meet the requirements of high accuracy rate and fewer size, but also its running time is greatly shortened. When the accuracy requirements are not very strict, but the the running time requirements is more stringent, the proposed method is a good choice.