{"title":"并行遗传算法在多目标优化问题中的新模型——分范围多目标遗传算法","authors":"T. Hiroyasu, M. Miki, S. Watanabe","doi":"10.1109/CEC.2000.870314","DOIUrl":null,"url":null,"abstract":"Proposes a divided-range multi-objective genetic algorithm (DRMOGA), which is a model for the parallel processing of genetic algorithms (GAs) for multi-objective problems. In the DRMOGA, the population of GAs is sorted with respect to the values of the objective function and divided into sub-populations. In each sub-population, a simple GA for multi-objective problems is performed. After some generations, all the individuals are gathered and they are sorted again. In this model, the Pareto-optimal solutions which are close to each other are collected into one sub-population. Therefore, this algorithm increases the calculation efficiency and a neighborhood search can be performed. Through numerical examples, the following facts become clear: (i) the DRMOGA is a very suitable GA model for parallel processing, and (ii) in some cases it can derive better solutions compared to both the single-population model and the distributed model.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"The new model of parallel genetic algorithm in multi-objective optimization problems - divided range multi-objective genetic algorithm\",\"authors\":\"T. Hiroyasu, M. Miki, S. Watanabe\",\"doi\":\"10.1109/CEC.2000.870314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes a divided-range multi-objective genetic algorithm (DRMOGA), which is a model for the parallel processing of genetic algorithms (GAs) for multi-objective problems. In the DRMOGA, the population of GAs is sorted with respect to the values of the objective function and divided into sub-populations. In each sub-population, a simple GA for multi-objective problems is performed. After some generations, all the individuals are gathered and they are sorted again. In this model, the Pareto-optimal solutions which are close to each other are collected into one sub-population. Therefore, this algorithm increases the calculation efficiency and a neighborhood search can be performed. Through numerical examples, the following facts become clear: (i) the DRMOGA is a very suitable GA model for parallel processing, and (ii) in some cases it can derive better solutions compared to both the single-population model and the distributed model.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The new model of parallel genetic algorithm in multi-objective optimization problems - divided range multi-objective genetic algorithm
Proposes a divided-range multi-objective genetic algorithm (DRMOGA), which is a model for the parallel processing of genetic algorithms (GAs) for multi-objective problems. In the DRMOGA, the population of GAs is sorted with respect to the values of the objective function and divided into sub-populations. In each sub-population, a simple GA for multi-objective problems is performed. After some generations, all the individuals are gathered and they are sorted again. In this model, the Pareto-optimal solutions which are close to each other are collected into one sub-population. Therefore, this algorithm increases the calculation efficiency and a neighborhood search can be performed. Through numerical examples, the following facts become clear: (i) the DRMOGA is a very suitable GA model for parallel processing, and (ii) in some cases it can derive better solutions compared to both the single-population model and the distributed model.