{"title":"基于遗传算法和遗传算法的电力系统发电机维修调度","authors":"K. Dahal, G. Burt, J. McDonald, S. Galloway","doi":"10.1109/CEC.2000.870347","DOIUrl":null,"url":null,"abstract":"Proposes the application of a genetic algorithm (GA) and simulated annealing (SA) based hybrid approach for the scheduling of generator maintenance in power systems using an integer representation. The adapted approach uses the probabilistic acceptance criterion of simulated annealing within the genetic algorithm framework. A case study is formulated in this paper as an integer programming problem using a reliability-based objective function and typical problem constraints. The implementation and performance of the solution technique are discussed. The results in this paper demonstrate that the technique is more effective than approaches based solely on genetic algorithms or solely on simulated annealing. It therefore proves to be a valid approach for the solution of generator maintenance scheduling problems.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"GA/SA-based hybrid techniques for the scheduling of generator maintenance in power systems\",\"authors\":\"K. Dahal, G. Burt, J. McDonald, S. Galloway\",\"doi\":\"10.1109/CEC.2000.870347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes the application of a genetic algorithm (GA) and simulated annealing (SA) based hybrid approach for the scheduling of generator maintenance in power systems using an integer representation. The adapted approach uses the probabilistic acceptance criterion of simulated annealing within the genetic algorithm framework. A case study is formulated in this paper as an integer programming problem using a reliability-based objective function and typical problem constraints. The implementation and performance of the solution technique are discussed. The results in this paper demonstrate that the technique is more effective than approaches based solely on genetic algorithms or solely on simulated annealing. It therefore proves to be a valid approach for the solution of generator maintenance scheduling problems.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GA/SA-based hybrid techniques for the scheduling of generator maintenance in power systems
Proposes the application of a genetic algorithm (GA) and simulated annealing (SA) based hybrid approach for the scheduling of generator maintenance in power systems using an integer representation. The adapted approach uses the probabilistic acceptance criterion of simulated annealing within the genetic algorithm framework. A case study is formulated in this paper as an integer programming problem using a reliability-based objective function and typical problem constraints. The implementation and performance of the solution technique are discussed. The results in this paper demonstrate that the technique is more effective than approaches based solely on genetic algorithms or solely on simulated annealing. It therefore proves to be a valid approach for the solution of generator maintenance scheduling problems.