{"title":"基于极性码的物理不可克隆函数改进鲁棒性","authors":"Yonghong Bai, Zhiyuan Yan","doi":"10.1109/SiPS.2017.8110010","DOIUrl":null,"url":null,"abstract":"Since physical unclonable functions (PUFs) are considered for various security applications such as authentication and key generation, the robustness of PUFs is vital. In prior works, various error correction codes, such as Bose-Chaudhuri-Hocquenghem (BCH) codes, were used to improve the robustness of PUFs. In this paper, we use polar codes, a new family of error correction codes, to improve the robustness of PUFs. Our results show that when compared with BCH codes, although polar codes have smaller minimum Hamming distances, they are more resistant to severe environmental effects.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Physical unclonable functions with improved robustness based on polar codes\",\"authors\":\"Yonghong Bai, Zhiyuan Yan\",\"doi\":\"10.1109/SiPS.2017.8110010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since physical unclonable functions (PUFs) are considered for various security applications such as authentication and key generation, the robustness of PUFs is vital. In prior works, various error correction codes, such as Bose-Chaudhuri-Hocquenghem (BCH) codes, were used to improve the robustness of PUFs. In this paper, we use polar codes, a new family of error correction codes, to improve the robustness of PUFs. Our results show that when compared with BCH codes, although polar codes have smaller minimum Hamming distances, they are more resistant to severe environmental effects.\",\"PeriodicalId\":251688,\"journal\":{\"name\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2017.8110010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8110010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical unclonable functions with improved robustness based on polar codes
Since physical unclonable functions (PUFs) are considered for various security applications such as authentication and key generation, the robustness of PUFs is vital. In prior works, various error correction codes, such as Bose-Chaudhuri-Hocquenghem (BCH) codes, were used to improve the robustness of PUFs. In this paper, we use polar codes, a new family of error correction codes, to improve the robustness of PUFs. Our results show that when compared with BCH codes, although polar codes have smaller minimum Hamming distances, they are more resistant to severe environmental effects.