Miao Li, George Daniel, B. Kahn, Liam H. Ohara, B. Casse, Nathan Pretorius, B. Krusor, P. Mei, G. Whiting, C. Tonkin, D. Lupo
{"title":"利用印刷有机整流二极管进行射频能量收集的全印刷大面积电场天线","authors":"Miao Li, George Daniel, B. Kahn, Liam H. Ohara, B. Casse, Nathan Pretorius, B. Krusor, P. Mei, G. Whiting, C. Tonkin, D. Lupo","doi":"10.1109/NANO.2018.8626318","DOIUrl":null,"url":null,"abstract":"Fully printed radio frequency (RF) harvesters that operate at HF RFID and ISM frequency of 13.56 MHz are normally comprised of a small printed loop antenna. They work at short ranges using inductive coupling. In this paper, we present a novel screen printed large area E-field antenna incorporated with a printed organic diode rectifier that can provide close to 1 V dc voltage with 1 W input at a distance of a few meters. The unique high bulk capacitance of the printed organic diodes enables effective imaginary impedance matching to the antenna without an additional matching component. The results demonstrate the possibility of fully printed RF energy harvesters for long range operation at HF frequencies.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"All Printed Large Area E-field Antenna Utilizing Printed Organic Rectifying Diodes for RF Energy Harvesting\",\"authors\":\"Miao Li, George Daniel, B. Kahn, Liam H. Ohara, B. Casse, Nathan Pretorius, B. Krusor, P. Mei, G. Whiting, C. Tonkin, D. Lupo\",\"doi\":\"10.1109/NANO.2018.8626318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully printed radio frequency (RF) harvesters that operate at HF RFID and ISM frequency of 13.56 MHz are normally comprised of a small printed loop antenna. They work at short ranges using inductive coupling. In this paper, we present a novel screen printed large area E-field antenna incorporated with a printed organic diode rectifier that can provide close to 1 V dc voltage with 1 W input at a distance of a few meters. The unique high bulk capacitance of the printed organic diodes enables effective imaginary impedance matching to the antenna without an additional matching component. The results demonstrate the possibility of fully printed RF energy harvesters for long range operation at HF frequencies.\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
All Printed Large Area E-field Antenna Utilizing Printed Organic Rectifying Diodes for RF Energy Harvesting
Fully printed radio frequency (RF) harvesters that operate at HF RFID and ISM frequency of 13.56 MHz are normally comprised of a small printed loop antenna. They work at short ranges using inductive coupling. In this paper, we present a novel screen printed large area E-field antenna incorporated with a printed organic diode rectifier that can provide close to 1 V dc voltage with 1 W input at a distance of a few meters. The unique high bulk capacitance of the printed organic diodes enables effective imaginary impedance matching to the antenna without an additional matching component. The results demonstrate the possibility of fully printed RF energy harvesters for long range operation at HF frequencies.