论knuth对banach火柴盒问题的推广

W. Dukes, K. Duffy
{"title":"论knuth对banach火柴盒问题的推广","authors":"W. Dukes, K. Duffy","doi":"10.1353/mpr.2004.0023","DOIUrl":null,"url":null,"abstract":"We revisit a simply stated problem of Knuth. Previous approaches rely on the Bernoulli nature of the underlying stochastic process to recover the systems mean behaviour. We show that limiting results hold for a wide range of stochastic processes. A Large Deviation Principle (LDP) is proved, allowing estimates to be made for the probability of rare-events. From the LDP, a weak law of large numbers is deduced.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON KNUTH'S GENERALISATION OF BANACH'S MATCHBOX PROBLEM\",\"authors\":\"W. Dukes, K. Duffy\",\"doi\":\"10.1353/mpr.2004.0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit a simply stated problem of Knuth. Previous approaches rely on the Bernoulli nature of the underlying stochastic process to recover the systems mean behaviour. We show that limiting results hold for a wide range of stochastic processes. A Large Deviation Principle (LDP) is proved, allowing estimates to be made for the probability of rare-events. From the LDP, a weak law of large numbers is deduced.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/mpr.2004.0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/mpr.2004.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们重新审视一个简单的高德纳问题。以前的方法依赖于底层随机过程的伯努利性质来恢复系统的平均行为。我们证明极限结果适用于广泛的随机过程。证明了一个大偏差原理(LDP),允许对罕见事件的概率进行估计。从LDP推导出一个弱大数定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ON KNUTH'S GENERALISATION OF BANACH'S MATCHBOX PROBLEM
We revisit a simply stated problem of Knuth. Previous approaches rely on the Bernoulli nature of the underlying stochastic process to recover the systems mean behaviour. We show that limiting results hold for a wide range of stochastic processes. A Large Deviation Principle (LDP) is proved, allowing estimates to be made for the probability of rare-events. From the LDP, a weak law of large numbers is deduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Advances In Exponential Random Graph Modelling Flux Limitation Mechanisms Arising in Multiscale Modelling of Cancer Invasion The Bergmann-Shilov boundary of a Bounded Symmetric Domain A Characterisation of the Quaternions Using Commutators Parallelogram Frameworks and Flexible Quasicrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1