Gaurav Khanna, Ümit V. Çatalyürek, T. Kurç, R. Kettimuthu, P. Sadayappan, Ian T Foster, J. Saltz
{"title":"利用覆盖层在共享广域网上进行有效的数据传输","authors":"Gaurav Khanna, Ümit V. Çatalyürek, T. Kurç, R. Kettimuthu, P. Sadayappan, Ian T Foster, J. Saltz","doi":"10.1145/1413370.1413418","DOIUrl":null,"url":null,"abstract":"Data-intensive applications frequently transfer large amounts of data over wide-area networks. The performance achieved in such settings can often be improved by routing data via intermediate nodes chosen to increase aggregate bandwidth. We explore the benefits of overlay network approaches by designing and implementing a service-oriented architecture that incorporates two key optimizations - multi-hop path splitting and multi-pathing - within the GridFTP file transfer protocol. We develop a file transfer scheduling algorithm that incorporates the two optimizations in conjunction with the use of available file replicas. The algorithm makes use of information from past GridFTP transfers to estimate network bandwidths and resource availability. The effectiveness of these optimizations is evaluated using several application file transfer patterns: one-to-all broadcast, all-to-one gather, and data redistribution, on a wide-area testbed. The experimental results show that our architecture and algorithm achieve significant performance improvement.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Using overlays for efficient data transfer over shared wide-area networks\",\"authors\":\"Gaurav Khanna, Ümit V. Çatalyürek, T. Kurç, R. Kettimuthu, P. Sadayappan, Ian T Foster, J. Saltz\",\"doi\":\"10.1145/1413370.1413418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-intensive applications frequently transfer large amounts of data over wide-area networks. The performance achieved in such settings can often be improved by routing data via intermediate nodes chosen to increase aggregate bandwidth. We explore the benefits of overlay network approaches by designing and implementing a service-oriented architecture that incorporates two key optimizations - multi-hop path splitting and multi-pathing - within the GridFTP file transfer protocol. We develop a file transfer scheduling algorithm that incorporates the two optimizations in conjunction with the use of available file replicas. The algorithm makes use of information from past GridFTP transfers to estimate network bandwidths and resource availability. The effectiveness of these optimizations is evaluated using several application file transfer patterns: one-to-all broadcast, all-to-one gather, and data redistribution, on a wide-area testbed. The experimental results show that our architecture and algorithm achieve significant performance improvement.\",\"PeriodicalId\":230761,\"journal\":{\"name\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1413370.1413418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1413370.1413418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using overlays for efficient data transfer over shared wide-area networks
Data-intensive applications frequently transfer large amounts of data over wide-area networks. The performance achieved in such settings can often be improved by routing data via intermediate nodes chosen to increase aggregate bandwidth. We explore the benefits of overlay network approaches by designing and implementing a service-oriented architecture that incorporates two key optimizations - multi-hop path splitting and multi-pathing - within the GridFTP file transfer protocol. We develop a file transfer scheduling algorithm that incorporates the two optimizations in conjunction with the use of available file replicas. The algorithm makes use of information from past GridFTP transfers to estimate network bandwidths and resource availability. The effectiveness of these optimizations is evaluated using several application file transfer patterns: one-to-all broadcast, all-to-one gather, and data redistribution, on a wide-area testbed. The experimental results show that our architecture and algorithm achieve significant performance improvement.