一种改进的DSSS信号伪码周期估计方法分析

Feng Chuan, Sui Tao, Zhou Fan
{"title":"一种改进的DSSS信号伪码周期估计方法分析","authors":"Feng Chuan, Sui Tao, Zhou Fan","doi":"10.1145/3144789.3144800","DOIUrl":null,"url":null,"abstract":"The DSSS signals are estimated to be difficult under low SNR conditions. In this paper, an improved DSSS signal pseudo-code period estimation method is proposed. It is based on the in-depth analysis of time domain autocorrelation estimation method. In this method, the DSSS signals are grouped by the averaging method, and then combined with the time domain autocorrelation estimation method. It reduces the influence of noise on the estimated performance and improve the SNR limit. The simulation results show that the effective estimation of the pseudo-code period is realized when the SNR is -15dB. Compared withthe cepstrum, it improves 7dB.","PeriodicalId":254163,"journal":{"name":"Proceedings of the 2nd International Conference on Intelligent Information Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis on an Improved Pseudo-Code Periodic Estimation Method for DSSS Signals\",\"authors\":\"Feng Chuan, Sui Tao, Zhou Fan\",\"doi\":\"10.1145/3144789.3144800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The DSSS signals are estimated to be difficult under low SNR conditions. In this paper, an improved DSSS signal pseudo-code period estimation method is proposed. It is based on the in-depth analysis of time domain autocorrelation estimation method. In this method, the DSSS signals are grouped by the averaging method, and then combined with the time domain autocorrelation estimation method. It reduces the influence of noise on the estimated performance and improve the SNR limit. The simulation results show that the effective estimation of the pseudo-code period is realized when the SNR is -15dB. Compared withthe cepstrum, it improves 7dB.\",\"PeriodicalId\":254163,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Intelligent Information Processing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Intelligent Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3144789.3144800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Intelligent Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3144789.3144800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

估计DSSS信号在低信噪比条件下是困难的。本文提出了一种改进的DSSS信号伪码周期估计方法。它是在深入分析时域自相关估计方法的基础上提出的。该方法首先采用平均法对DSSS信号进行分组,然后与时域自相关估计方法相结合。它降低了噪声对估计性能的影响,提高了信噪比极限。仿真结果表明,当信噪比为-15dB时,可以实现伪码周期的有效估计。与倒谱相比,提高了7dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis on an Improved Pseudo-Code Periodic Estimation Method for DSSS Signals
The DSSS signals are estimated to be difficult under low SNR conditions. In this paper, an improved DSSS signal pseudo-code period estimation method is proposed. It is based on the in-depth analysis of time domain autocorrelation estimation method. In this method, the DSSS signals are grouped by the averaging method, and then combined with the time domain autocorrelation estimation method. It reduces the influence of noise on the estimated performance and improve the SNR limit. The simulation results show that the effective estimation of the pseudo-code period is realized when the SNR is -15dB. Compared withthe cepstrum, it improves 7dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-line Multi-step Prediction of Short Term Traffic Flow Based on GRU Neural Network An Image Denoising Fast Algorithm for Weighted Total Variation An AQI Level Forecasting Model Using Chi-square Test and BP Neural Network Research on Mural Inpainting Method based on MCA Image Decomposition Variation Characteristics Analysis of the Vegetation Coverage in Midu County Based on Landsat 8 Remote Sensing Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1