基于资源感知的假手半自主抓取目标分类与分割

Felix Hundhausen, Denis Megerle, T. Asfour
{"title":"基于资源感知的假手半自主抓取目标分类与分割","authors":"Felix Hundhausen, Denis Megerle, T. Asfour","doi":"10.1109/Humanoids43949.2019.9035054","DOIUrl":null,"url":null,"abstract":"Myoelectric control of prosthetic hands relies on electromyographic (EMG) signals captured by usually two surface electrodes attached to the human body in different setups. Controlling the hand by the user requires long training and depends heavily on the robustness of the EMG signals. In this paper, we present a visual perception system to extract scene information for semi-autonomous hand-control that allows minimizing required command complexity and leads to more intuitive and effortless control. We present methods that are optimized towards minimal resource demand to derive scene information from visual data from a camera inside the hand. In particular, we show object classification and semantic segmentation of image data realized by convolutional neural networks (CNNs). We present a system architecture, that takes user feedback into account and thereby improves results. In addition, we present an evolutionary algorithm to optimize CNN architecture regarding accuracy and hardware resource demand. Our evaluation shows classification accuracy of 96.5% and segmentation accuracy of up to 89.5% on an in-hand Arm Cortex-H7 microcontroller running at only 400 MHz.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Resource-Aware Object Classification and Segmentation for Semi-Autonomous Grasping with Prosthetic Hands\",\"authors\":\"Felix Hundhausen, Denis Megerle, T. Asfour\",\"doi\":\"10.1109/Humanoids43949.2019.9035054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Myoelectric control of prosthetic hands relies on electromyographic (EMG) signals captured by usually two surface electrodes attached to the human body in different setups. Controlling the hand by the user requires long training and depends heavily on the robustness of the EMG signals. In this paper, we present a visual perception system to extract scene information for semi-autonomous hand-control that allows minimizing required command complexity and leads to more intuitive and effortless control. We present methods that are optimized towards minimal resource demand to derive scene information from visual data from a camera inside the hand. In particular, we show object classification and semantic segmentation of image data realized by convolutional neural networks (CNNs). We present a system architecture, that takes user feedback into account and thereby improves results. In addition, we present an evolutionary algorithm to optimize CNN architecture regarding accuracy and hardware resource demand. Our evaluation shows classification accuracy of 96.5% and segmentation accuracy of up to 89.5% on an in-hand Arm Cortex-H7 microcontroller running at only 400 MHz.\",\"PeriodicalId\":404758,\"journal\":{\"name\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids43949.2019.9035054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9035054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

假手的肌电控制依赖于肌电图(EMG)信号,通常由附着在不同设置下的人体表面的两个电极捕获。用户控制手需要长时间的训练,并且很大程度上依赖于肌电图信号的鲁棒性。在本文中,我们提出了一种视觉感知系统,用于提取半自主手动控制的场景信息,该系统允许最小化所需的命令复杂性,并导致更直观和轻松的控制。我们提出了一种优化的方法,以最小化资源需求,从手部相机的视觉数据中获取场景信息。特别地,我们展示了卷积神经网络(cnn)实现的图像数据的对象分类和语义分割。我们提出了一个系统架构,考虑到用户的反馈,从而改善了结果。此外,我们提出了一种进化算法来优化CNN架构,以满足精度和硬件资源需求。我们的评估显示,在仅运行400 MHz的手持Arm Cortex-H7微控制器上,分类精度为96.5%,分割精度高达89.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource-Aware Object Classification and Segmentation for Semi-Autonomous Grasping with Prosthetic Hands
Myoelectric control of prosthetic hands relies on electromyographic (EMG) signals captured by usually two surface electrodes attached to the human body in different setups. Controlling the hand by the user requires long training and depends heavily on the robustness of the EMG signals. In this paper, we present a visual perception system to extract scene information for semi-autonomous hand-control that allows minimizing required command complexity and leads to more intuitive and effortless control. We present methods that are optimized towards minimal resource demand to derive scene information from visual data from a camera inside the hand. In particular, we show object classification and semantic segmentation of image data realized by convolutional neural networks (CNNs). We present a system architecture, that takes user feedback into account and thereby improves results. In addition, we present an evolutionary algorithm to optimize CNN architecture regarding accuracy and hardware resource demand. Our evaluation shows classification accuracy of 96.5% and segmentation accuracy of up to 89.5% on an in-hand Arm Cortex-H7 microcontroller running at only 400 MHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Position-Based Lateral Balance Control for Knee-Stretched Biped Robot Mechanistic Properties of Five-bar Parallel Mechanism for Leg Structure Based on Spring Loaded Inverted Pendulum A deep reinforcement learning based approach towards generating human walking behavior with a neuromuscular model Using Virtual Reality to Examine the Neural and Physiological Anxiety-Related Responses to Balance-Demanding Target-Reaching Leaning Tasks Motion Retargeting and Control for Teleoperated Physical Human-Robot Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1