基于振动特征的地形图推理贝叶斯方法

Hyeonwoo Yu, Beomhee Lee
{"title":"基于振动特征的地形图推理贝叶斯方法","authors":"Hyeonwoo Yu, Beomhee Lee","doi":"10.1109/MFI.2017.8170440","DOIUrl":null,"url":null,"abstract":"In this paper, we represent a terrain inference method based on vibration features. Autonomous navigation in unstructured environments is a challenging problem. Especially, the detailed interpretation of terrain in unstructured environments is necessary to set an efficient navigation trajectory. As the vibration features are obtained from interactions between the robot and terrain, terrain inference based on vibration can be conducted. To perform the terrain inference for robot path and unobserved field simultaneously, we use a Bayesian random field for structured prediction method. The robot path and the unobserved field are represented by the Conditional Random Field (CRF), and based on the terrain information observed on the robot path, the terrain of the region that the robot does not approach is estimated together. The proposed algorithm is tested with a 4WD mobile robot and real-terrain testbed.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Bayesian approach to terrain map inference based on vibration features\",\"authors\":\"Hyeonwoo Yu, Beomhee Lee\",\"doi\":\"10.1109/MFI.2017.8170440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we represent a terrain inference method based on vibration features. Autonomous navigation in unstructured environments is a challenging problem. Especially, the detailed interpretation of terrain in unstructured environments is necessary to set an efficient navigation trajectory. As the vibration features are obtained from interactions between the robot and terrain, terrain inference based on vibration can be conducted. To perform the terrain inference for robot path and unobserved field simultaneously, we use a Bayesian random field for structured prediction method. The robot path and the unobserved field are represented by the Conditional Random Field (CRF), and based on the terrain information observed on the robot path, the terrain of the region that the robot does not approach is estimated together. The proposed algorithm is tested with a 4WD mobile robot and real-terrain testbed.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于振动特征的地形推断方法。在非结构化环境中自主导航是一个具有挑战性的问题。特别是,在非结构化环境中,地形的详细解释对于设置有效的导航轨迹是必要的。由于振动特征是由机器人与地形的相互作用得到的,因此可以进行基于振动的地形推断。为了同时对机器人路径和未观测场进行地形推断,我们采用贝叶斯随机场进行结构化预测。将机器人路径和未观测区域用条件随机场(Conditional Random field, CRF)表示,根据机器人路径上观测到的地形信息,共同估计机器人未接近区域的地形。采用四轮驱动移动机器人和真实地形试验台对该算法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian approach to terrain map inference based on vibration features
In this paper, we represent a terrain inference method based on vibration features. Autonomous navigation in unstructured environments is a challenging problem. Especially, the detailed interpretation of terrain in unstructured environments is necessary to set an efficient navigation trajectory. As the vibration features are obtained from interactions between the robot and terrain, terrain inference based on vibration can be conducted. To perform the terrain inference for robot path and unobserved field simultaneously, we use a Bayesian random field for structured prediction method. The robot path and the unobserved field are represented by the Conditional Random Field (CRF), and based on the terrain information observed on the robot path, the terrain of the region that the robot does not approach is estimated together. The proposed algorithm is tested with a 4WD mobile robot and real-terrain testbed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep reinforcement learning algorithms for steering an underactuated ship Data analytics development of FDR (Flight Data Recorder) data for airline maintenance operations Underwater Terrain Navigation Using Standard Sea Charts and Magnetic Field Maps Musculoskeletal model of a pregnant woman considering stretched rectus abdominis and co-contraction muscle activation Compressive sensing based data collection in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1