基于一类支持向量机的特征子空间选择:在纹理图像分割中的应用

Xiyan He, P. Beauseroy, A. Smolarz
{"title":"基于一类支持向量机的特征子空间选择:在纹理图像分割中的应用","authors":"Xiyan He, P. Beauseroy, A. Smolarz","doi":"10.1109/IPTA.2010.5586807","DOIUrl":null,"url":null,"abstract":"This paper presents a feature subspaces selection method which uses an ensemble of one-class SVMs. The objective is to improve or preserve the performance of a decision system in the presence of noise, loss of information or feature non-stationarity. The proposed method consists in first generating an ensemble of feature subspaces from the initial full-dimensional space, and then making the decision by using only the subspaces which are supposed to be immune to the non-stationary disturbance. One particularity of this method is that we use the one-class SVM ensemble to carry out the feature selection and the classification tasks at the same time. Textured image segmentation constitutes an appropriate application for the evaluation of the proposed approach. The experimental results demonstrate the effectiveness of the decision system that we have developed.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature subspaces selection via one-class SVM: Application to textured image segmentation\",\"authors\":\"Xiyan He, P. Beauseroy, A. Smolarz\",\"doi\":\"10.1109/IPTA.2010.5586807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a feature subspaces selection method which uses an ensemble of one-class SVMs. The objective is to improve or preserve the performance of a decision system in the presence of noise, loss of information or feature non-stationarity. The proposed method consists in first generating an ensemble of feature subspaces from the initial full-dimensional space, and then making the decision by using only the subspaces which are supposed to be immune to the non-stationary disturbance. One particularity of this method is that we use the one-class SVM ensemble to carry out the feature selection and the classification tasks at the same time. Textured image segmentation constitutes an appropriate application for the evaluation of the proposed approach. The experimental results demonstrate the effectiveness of the decision system that we have developed.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于一类支持向量机集合的特征子空间选择方法。目标是在存在噪声、信息丢失或特征非平稳性的情况下改善或保持决策系统的性能。该方法首先从初始全维空间生成特征子空间集合,然后仅使用假定不受非平稳干扰影响的子空间进行决策。该方法的一个特点是使用单类SVM集成同时进行特征选择和分类任务。纹理图像分割构成了对所提出的方法进行评估的适当应用。实验结果证明了所开发的决策系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature subspaces selection via one-class SVM: Application to textured image segmentation
This paper presents a feature subspaces selection method which uses an ensemble of one-class SVMs. The objective is to improve or preserve the performance of a decision system in the presence of noise, loss of information or feature non-stationarity. The proposed method consists in first generating an ensemble of feature subspaces from the initial full-dimensional space, and then making the decision by using only the subspaces which are supposed to be immune to the non-stationary disturbance. One particularity of this method is that we use the one-class SVM ensemble to carry out the feature selection and the classification tasks at the same time. Textured image segmentation constitutes an appropriate application for the evaluation of the proposed approach. The experimental results demonstrate the effectiveness of the decision system that we have developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1