使用可扩展同象性的协同数据科学

H. Pirk
{"title":"使用可扩展同象性的协同数据科学","authors":"H. Pirk","doi":"10.1145/3582302.3582316","DOIUrl":null,"url":null,"abstract":"Motivation: Data science is increasingly collaborative. On the one hand, results need to be distributed, e.g., as interactive visualizations. On the other, collaboration in the data development process improves quality and timeliness. This can take many forms: partitioning a problem and working on aspects in parallel, exploring different solutions or reviewing someone else's work.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Data Science using Scalable Homoiconicity\",\"authors\":\"H. Pirk\",\"doi\":\"10.1145/3582302.3582316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivation: Data science is increasingly collaborative. On the one hand, results need to be distributed, e.g., as interactive visualizations. On the other, collaboration in the data development process improves quality and timeliness. This can take many forms: partitioning a problem and working on aspects in parallel, exploring different solutions or reviewing someone else's work.\",\"PeriodicalId\":346332,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3582302.3582316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582302.3582316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:数据科学的协作性越来越强。一方面,结果需要分发,例如,作为交互式可视化。另一方面,数据开发过程中的协作提高了质量和及时性。这可以采取多种形式:划分问题并并行处理各个方面,探索不同的解决方案或审查其他人的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collaborative Data Science using Scalable Homoiconicity
Motivation: Data science is increasingly collaborative. On the one hand, results need to be distributed, e.g., as interactive visualizations. On the other, collaboration in the data development process improves quality and timeliness. This can take many forms: partitioning a problem and working on aspects in parallel, exploring different solutions or reviewing someone else's work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1