{"title":"2016年熊本地震长周期桥梁体系损伤机理的澄清","authors":"S. Yamamoto, G. Shoji, M. Ohsumi","doi":"10.23967/wccm-apcom.2022.025","DOIUrl":null,"url":null,"abstract":". This study aims to clarify the damage mechanism of a long-period bridge system — the Ohkirihata Bridge damaged in the 2016 Kumamoto earthquake — subjected to the combined effects of long-period pulsive ground motions and surface fault displacements. The target bridge’s site-specific waveforms at abutment A1 were estimated using the finite difference method. Linear dynamic analysis with a three-dimensional finite element model of the bridge structure-underground interconnected system was performed to examine the effects of long-period pulsive ground motions on the coupled responses of essential structural components: superstructure, rubber bearings, abutments, piers, foundations and underground.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clarification of the Damage Mechanism of the Long-Period Bridge System Damaged by the 2016 Kumamoto Earthquake\",\"authors\":\"S. Yamamoto, G. Shoji, M. Ohsumi\",\"doi\":\"10.23967/wccm-apcom.2022.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This study aims to clarify the damage mechanism of a long-period bridge system — the Ohkirihata Bridge damaged in the 2016 Kumamoto earthquake — subjected to the combined effects of long-period pulsive ground motions and surface fault displacements. The target bridge’s site-specific waveforms at abutment A1 were estimated using the finite difference method. Linear dynamic analysis with a three-dimensional finite element model of the bridge structure-underground interconnected system was performed to examine the effects of long-period pulsive ground motions on the coupled responses of essential structural components: superstructure, rubber bearings, abutments, piers, foundations and underground.\",\"PeriodicalId\":429847,\"journal\":{\"name\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/wccm-apcom.2022.025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clarification of the Damage Mechanism of the Long-Period Bridge System Damaged by the 2016 Kumamoto Earthquake
. This study aims to clarify the damage mechanism of a long-period bridge system — the Ohkirihata Bridge damaged in the 2016 Kumamoto earthquake — subjected to the combined effects of long-period pulsive ground motions and surface fault displacements. The target bridge’s site-specific waveforms at abutment A1 were estimated using the finite difference method. Linear dynamic analysis with a three-dimensional finite element model of the bridge structure-underground interconnected system was performed to examine the effects of long-period pulsive ground motions on the coupled responses of essential structural components: superstructure, rubber bearings, abutments, piers, foundations and underground.