Sascha Breun, Albert-Marcel Schrotz, M. Dietz, V. Issakov, R. Weigel
{"title":"基于SiGe BiCMOS技术的314-344 GHz驱动级倍频器和1dbm Psat","authors":"Sascha Breun, Albert-Marcel Schrotz, M. Dietz, V. Issakov, R. Weigel","doi":"10.1109/SiRF51851.2021.9383328","DOIUrl":null,"url":null,"abstract":"This paper presents a 314-344 GHz high output power push-push frequency doubler for radar applications with 1 dBm Psat at 324 GHz and 30 GHz Psat 3 dB–bandwidth. It is driven by a three-stage, cascode-based D-band driving stage, providing a differential saturated output power of 14.3 dBm at 154 GHz with a peak PAE of 4.5% and 13.4 dBm output referred P1 dB. The chip is fabricated using a 130 nm SiGe BiCMOS technology with ft/fmax of 250 GHz / 370 GHz. Thanks to the use of harmonic reflectors an overall peak conversion gain of 20 dB is achieved and remains above 6 dB at saturation.","PeriodicalId":166842,"journal":{"name":"2021 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A 314-344 GHz Frequency Doubler with Driving Stage and 1 dBm Psat in SiGe BiCMOS Technology\",\"authors\":\"Sascha Breun, Albert-Marcel Schrotz, M. Dietz, V. Issakov, R. Weigel\",\"doi\":\"10.1109/SiRF51851.2021.9383328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 314-344 GHz high output power push-push frequency doubler for radar applications with 1 dBm Psat at 324 GHz and 30 GHz Psat 3 dB–bandwidth. It is driven by a three-stage, cascode-based D-band driving stage, providing a differential saturated output power of 14.3 dBm at 154 GHz with a peak PAE of 4.5% and 13.4 dBm output referred P1 dB. The chip is fabricated using a 130 nm SiGe BiCMOS technology with ft/fmax of 250 GHz / 370 GHz. Thanks to the use of harmonic reflectors an overall peak conversion gain of 20 dB is achieved and remains above 6 dB at saturation.\",\"PeriodicalId\":166842,\"journal\":{\"name\":\"2021 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiRF51851.2021.9383328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiRF51851.2021.9383328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 314-344 GHz Frequency Doubler with Driving Stage and 1 dBm Psat in SiGe BiCMOS Technology
This paper presents a 314-344 GHz high output power push-push frequency doubler for radar applications with 1 dBm Psat at 324 GHz and 30 GHz Psat 3 dB–bandwidth. It is driven by a three-stage, cascode-based D-band driving stage, providing a differential saturated output power of 14.3 dBm at 154 GHz with a peak PAE of 4.5% and 13.4 dBm output referred P1 dB. The chip is fabricated using a 130 nm SiGe BiCMOS technology with ft/fmax of 250 GHz / 370 GHz. Thanks to the use of harmonic reflectors an overall peak conversion gain of 20 dB is achieved and remains above 6 dB at saturation.