{"title":"802.15.3c/802.11ad双模相位噪声消除60ghz通信系统","authors":"Liang-Yu Huang, Chia-Yi Wu, Chun-Yi Liu, Wei-Chang Liu, Chih-Feng Wu, S. Jou","doi":"10.1109/VLSI-DAT.2015.7114575","DOIUrl":null,"url":null,"abstract":"In this paper, a phase noise cancellation (PNC) architecture is presented for 60 GHz communication systems. The BER performance is severely degraded by the non-ideal carrier frequency in 60 GHz bandwidth, which causes both common phase error (CPE) and residual carrier frequency offset (RCFO). The proposed simplified two-stage CPE algorithm solves the RCFO and common phase nose in the frequency domain and eliminates the constellation rotation on each sub-channel. Two-stage architecture together with deep pipelining technique achieves a high throughput rate. This PNC architecture has been implemented in a SC/OFDM Dual-Mode baseband receiver satisfying the requirements of the 802.15.3c/802.11ad standard with a 40 nm process. The proposed PNC is able to support 64QAM/16QAM for OFDM/SC mode, and can achieve up to 19.2 Giga-bit per second (Gbps) throughput rate at 400 MHz operating frequency with power consumption of 33 mW and area of 0.142 mm2.","PeriodicalId":369130,"journal":{"name":"VLSI Design, Automation and Test(VLSI-DAT)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A 802.15.3c/802.11ad dual mode phase noise cancellation for 60 GHz communication systems\",\"authors\":\"Liang-Yu Huang, Chia-Yi Wu, Chun-Yi Liu, Wei-Chang Liu, Chih-Feng Wu, S. Jou\",\"doi\":\"10.1109/VLSI-DAT.2015.7114575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a phase noise cancellation (PNC) architecture is presented for 60 GHz communication systems. The BER performance is severely degraded by the non-ideal carrier frequency in 60 GHz bandwidth, which causes both common phase error (CPE) and residual carrier frequency offset (RCFO). The proposed simplified two-stage CPE algorithm solves the RCFO and common phase nose in the frequency domain and eliminates the constellation rotation on each sub-channel. Two-stage architecture together with deep pipelining technique achieves a high throughput rate. This PNC architecture has been implemented in a SC/OFDM Dual-Mode baseband receiver satisfying the requirements of the 802.15.3c/802.11ad standard with a 40 nm process. The proposed PNC is able to support 64QAM/16QAM for OFDM/SC mode, and can achieve up to 19.2 Giga-bit per second (Gbps) throughput rate at 400 MHz operating frequency with power consumption of 33 mW and area of 0.142 mm2.\",\"PeriodicalId\":369130,\"journal\":{\"name\":\"VLSI Design, Automation and Test(VLSI-DAT)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VLSI Design, Automation and Test(VLSI-DAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI-DAT.2015.7114575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI Design, Automation and Test(VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT.2015.7114575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 802.15.3c/802.11ad dual mode phase noise cancellation for 60 GHz communication systems
In this paper, a phase noise cancellation (PNC) architecture is presented for 60 GHz communication systems. The BER performance is severely degraded by the non-ideal carrier frequency in 60 GHz bandwidth, which causes both common phase error (CPE) and residual carrier frequency offset (RCFO). The proposed simplified two-stage CPE algorithm solves the RCFO and common phase nose in the frequency domain and eliminates the constellation rotation on each sub-channel. Two-stage architecture together with deep pipelining technique achieves a high throughput rate. This PNC architecture has been implemented in a SC/OFDM Dual-Mode baseband receiver satisfying the requirements of the 802.15.3c/802.11ad standard with a 40 nm process. The proposed PNC is able to support 64QAM/16QAM for OFDM/SC mode, and can achieve up to 19.2 Giga-bit per second (Gbps) throughput rate at 400 MHz operating frequency with power consumption of 33 mW and area of 0.142 mm2.