跨未知测试数据的平衡-次采样稳定预测

Kun Kuang, Hengtao Zhang, Runze Wu, Fei Wu, Y. Zhuang, Aijun Zhang
{"title":"跨未知测试数据的平衡-次采样稳定预测","authors":"Kun Kuang, Hengtao Zhang, Runze Wu, Fei Wu, Y. Zhuang, Aijun Zhang","doi":"10.1145/3477052","DOIUrl":null,"url":null,"abstract":"In data mining and machine learning, it is commonly assumed that training and test data share the same population distribution. However, this assumption is often violated in practice because of the sample selection bias, which might induce the distribution shift from training data to test data. Such a model-agnostic distribution shift usually leads to prediction instability across unknown test data. This article proposes a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design. It isolates the clear effect of each predictor from the confounding variables. A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift, improving both the accuracy of parameter estimation and the stability of prediction across unknown test data. Numerical experiments on synthetic and real-world datasets demonstrate that our BSSP algorithm can significantly outperform the baseline methods for stable prediction across unknown test data.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Balance-Subsampled Stable Prediction Across Unknown Test Data\",\"authors\":\"Kun Kuang, Hengtao Zhang, Runze Wu, Fei Wu, Y. Zhuang, Aijun Zhang\",\"doi\":\"10.1145/3477052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data mining and machine learning, it is commonly assumed that training and test data share the same population distribution. However, this assumption is often violated in practice because of the sample selection bias, which might induce the distribution shift from training data to test data. Such a model-agnostic distribution shift usually leads to prediction instability across unknown test data. This article proposes a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design. It isolates the clear effect of each predictor from the confounding variables. A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift, improving both the accuracy of parameter estimation and the stability of prediction across unknown test data. Numerical experiments on synthetic and real-world datasets demonstrate that our BSSP algorithm can significantly outperform the baseline methods for stable prediction across unknown test data.\",\"PeriodicalId\":435653,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3477052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在数据挖掘和机器学习中,通常假设训练数据和测试数据共享相同的总体分布。然而,在实践中,由于样本选择偏差,这一假设经常被违背,这可能导致分布从训练数据到测试数据的转移。这种与模型无关的分布转移通常会导致未知测试数据的预测不稳定。本文提出了一种基于分数因子设计理论的平衡-次抽样稳定预测(BSSP)算法。它从混杂变量中分离出每个预测因子的明显影响。设计理论分析表明,该方法可以减少分布移位引起的预测因子之间的混杂效应,提高参数估计的精度和跨未知测试数据预测的稳定性。在合成数据集和实际数据集上的数值实验表明,我们的BSSP算法在未知测试数据的稳定预测方面明显优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Balance-Subsampled Stable Prediction Across Unknown Test Data
In data mining and machine learning, it is commonly assumed that training and test data share the same population distribution. However, this assumption is often violated in practice because of the sample selection bias, which might induce the distribution shift from training data to test data. Such a model-agnostic distribution shift usually leads to prediction instability across unknown test data. This article proposes a novel balance-subsampled stable prediction (BSSP) algorithm based on the theory of fractional factorial design. It isolates the clear effect of each predictor from the confounding variables. A design-theoretic analysis shows that the proposed method can reduce the confounding effects among predictors induced by the distribution shift, improving both the accuracy of parameter estimation and the stability of prediction across unknown test data. Numerical experiments on synthetic and real-world datasets demonstrate that our BSSP algorithm can significantly outperform the baseline methods for stable prediction across unknown test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning-based Short-term Rainfall Prediction from Sky Data Incremental Feature Spaces Learning with Label Scarcity Multi-objective Learning to Overcome Catastrophic Forgetting in Time-series Applications Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series Segment-Wise Time-Varying Dynamic Bayesian Network with Graph Regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1