{"title":"基于智能体的交替最大化问题的社会进化模拟","authors":"Amartya Sanyal, Sanjana Garg, Asim Unmesh","doi":"10.1109/BESC.2017.8256376","DOIUrl":null,"url":null,"abstract":"Understanding the evolution of human society, as a complex adaptive system, is a task that has been looked upon from various angles. In this paper, we simulate an agent-based model with a high enough population tractably. To do this, we characterize an entity called society, which helps us reduce the complexity of each step from O(n2) to O(n). We propose a very realistic setting, where we design a joint alternate maximization step algorithm to maximize a certain fitness function, which we believe simulates the way societies develop. Our key contributions include (i) proposing a novel protocol for simulating the evolution of a society with cheap, non-optimal joint alternate maximization steps (ii) providing a framework for carrying out experiments that adhere to this joint-optimization simulation framework (iii) carrying out experiments to show that it makes sense empirically (iv) providing an alternate justification for the use of society in the simulations.","PeriodicalId":142098,"journal":{"name":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agent based simulation of the evolution of society as an alternate maximzation problem\",\"authors\":\"Amartya Sanyal, Sanjana Garg, Asim Unmesh\",\"doi\":\"10.1109/BESC.2017.8256376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the evolution of human society, as a complex adaptive system, is a task that has been looked upon from various angles. In this paper, we simulate an agent-based model with a high enough population tractably. To do this, we characterize an entity called society, which helps us reduce the complexity of each step from O(n2) to O(n). We propose a very realistic setting, where we design a joint alternate maximization step algorithm to maximize a certain fitness function, which we believe simulates the way societies develop. Our key contributions include (i) proposing a novel protocol for simulating the evolution of a society with cheap, non-optimal joint alternate maximization steps (ii) providing a framework for carrying out experiments that adhere to this joint-optimization simulation framework (iii) carrying out experiments to show that it makes sense empirically (iv) providing an alternate justification for the use of society in the simulations.\",\"PeriodicalId\":142098,\"journal\":{\"name\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BESC.2017.8256376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2017.8256376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Agent based simulation of the evolution of society as an alternate maximzation problem
Understanding the evolution of human society, as a complex adaptive system, is a task that has been looked upon from various angles. In this paper, we simulate an agent-based model with a high enough population tractably. To do this, we characterize an entity called society, which helps us reduce the complexity of each step from O(n2) to O(n). We propose a very realistic setting, where we design a joint alternate maximization step algorithm to maximize a certain fitness function, which we believe simulates the way societies develop. Our key contributions include (i) proposing a novel protocol for simulating the evolution of a society with cheap, non-optimal joint alternate maximization steps (ii) providing a framework for carrying out experiments that adhere to this joint-optimization simulation framework (iii) carrying out experiments to show that it makes sense empirically (iv) providing an alternate justification for the use of society in the simulations.