基于智能体的交替最大化问题的社会进化模拟

Amartya Sanyal, Sanjana Garg, Asim Unmesh
{"title":"基于智能体的交替最大化问题的社会进化模拟","authors":"Amartya Sanyal, Sanjana Garg, Asim Unmesh","doi":"10.1109/BESC.2017.8256376","DOIUrl":null,"url":null,"abstract":"Understanding the evolution of human society, as a complex adaptive system, is a task that has been looked upon from various angles. In this paper, we simulate an agent-based model with a high enough population tractably. To do this, we characterize an entity called society, which helps us reduce the complexity of each step from O(n2) to O(n). We propose a very realistic setting, where we design a joint alternate maximization step algorithm to maximize a certain fitness function, which we believe simulates the way societies develop. Our key contributions include (i) proposing a novel protocol for simulating the evolution of a society with cheap, non-optimal joint alternate maximization steps (ii) providing a framework for carrying out experiments that adhere to this joint-optimization simulation framework (iii) carrying out experiments to show that it makes sense empirically (iv) providing an alternate justification for the use of society in the simulations.","PeriodicalId":142098,"journal":{"name":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agent based simulation of the evolution of society as an alternate maximzation problem\",\"authors\":\"Amartya Sanyal, Sanjana Garg, Asim Unmesh\",\"doi\":\"10.1109/BESC.2017.8256376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the evolution of human society, as a complex adaptive system, is a task that has been looked upon from various angles. In this paper, we simulate an agent-based model with a high enough population tractably. To do this, we characterize an entity called society, which helps us reduce the complexity of each step from O(n2) to O(n). We propose a very realistic setting, where we design a joint alternate maximization step algorithm to maximize a certain fitness function, which we believe simulates the way societies develop. Our key contributions include (i) proposing a novel protocol for simulating the evolution of a society with cheap, non-optimal joint alternate maximization steps (ii) providing a framework for carrying out experiments that adhere to this joint-optimization simulation framework (iii) carrying out experiments to show that it makes sense empirically (iv) providing an alternate justification for the use of society in the simulations.\",\"PeriodicalId\":142098,\"journal\":{\"name\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BESC.2017.8256376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2017.8256376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

理解人类社会作为一个复杂的适应系统的进化,是一项从不同角度看待的任务。在本文中,我们模拟了一个具有足够高的可跟踪人口的基于智能体的模型。为了做到这一点,我们描述了一个称为社会的实体,它帮助我们减少了从O(n2)到O(n)的每一步的复杂性。我们提出了一个非常现实的设置,我们设计了一个联合交替最大化步骤算法来最大化某个适应度函数,我们认为这模拟了社会发展的方式。我们的主要贡献包括(i)提出了一种新的协议,用于模拟具有廉价,非最优联合替代最大化步骤的社会进化;(ii)提供了一个框架,用于执行坚持该联合优化模拟框架的实验;(iii)进行实验以证明它在经验上是有意义的;(iv)为在模拟中使用社会提供了另一种理由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agent based simulation of the evolution of society as an alternate maximzation problem
Understanding the evolution of human society, as a complex adaptive system, is a task that has been looked upon from various angles. In this paper, we simulate an agent-based model with a high enough population tractably. To do this, we characterize an entity called society, which helps us reduce the complexity of each step from O(n2) to O(n). We propose a very realistic setting, where we design a joint alternate maximization step algorithm to maximize a certain fitness function, which we believe simulates the way societies develop. Our key contributions include (i) proposing a novel protocol for simulating the evolution of a society with cheap, non-optimal joint alternate maximization steps (ii) providing a framework for carrying out experiments that adhere to this joint-optimization simulation framework (iii) carrying out experiments to show that it makes sense empirically (iv) providing an alternate justification for the use of society in the simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IBM data governance solutions Causalities among momentum, transparency and media in China Can Bayesian poisson tensor factorization automatically extract interesting events from massive media reports? The influence of big data and informatization on tourism industry Discover social relations and activities from ancient Chinese history book Zuo Zhuan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1