基于环的P2P网络的有效数据密度估计

Minqi Zhou, Heng Tao Shen, Xiaofang Zhou, Weining Qian, Aoying Zhou
{"title":"基于环的P2P网络的有效数据密度估计","authors":"Minqi Zhou, Heng Tao Shen, Xiaofang Zhou, Weining Qian, Aoying Zhou","doi":"10.1109/ICDE.2012.19","DOIUrl":null,"url":null,"abstract":"Estimating the global data distribution in Peer-to-Peer (P2P) networks is an important issue and has yet to be well addressed. It can benefit many P2P applications, such as load balancing analysis, query processing, and data mining. Inspired by the inversion method for random variate generation, in this paper we present a novel model named distribution-free data density estimation for dynamic ring-based P2P networks to achieve high estimation accuracy with low estimation cost regardless of distribution models of the underlying data. It generates random samples for any arbitrary distribution by sampling the global cumulative distribution function and is free from sampling bias. In P2P networks, the key idea for distribution-free estimation is to sample a small subset of peers for estimating the global data distribution over the data domain. Algorithms on computing and sampling the global cumulative distribution function based on which global data distribution is estimated are introduced with detailed theoretical analysis. Our extensive performance study confirms the effectiveness and efficiency of our methods in ring-based P2P networks.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"8 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effective Data Density Estimation in Ring-Based P2P Networks\",\"authors\":\"Minqi Zhou, Heng Tao Shen, Xiaofang Zhou, Weining Qian, Aoying Zhou\",\"doi\":\"10.1109/ICDE.2012.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the global data distribution in Peer-to-Peer (P2P) networks is an important issue and has yet to be well addressed. It can benefit many P2P applications, such as load balancing analysis, query processing, and data mining. Inspired by the inversion method for random variate generation, in this paper we present a novel model named distribution-free data density estimation for dynamic ring-based P2P networks to achieve high estimation accuracy with low estimation cost regardless of distribution models of the underlying data. It generates random samples for any arbitrary distribution by sampling the global cumulative distribution function and is free from sampling bias. In P2P networks, the key idea for distribution-free estimation is to sample a small subset of peers for estimating the global data distribution over the data domain. Algorithms on computing and sampling the global cumulative distribution function based on which global data distribution is estimated are introduced with detailed theoretical analysis. Our extensive performance study confirms the effectiveness and efficiency of our methods in ring-based P2P networks.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"8 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

估计点对点(P2P)网络中的全球数据分布是一个重要的问题,但尚未得到很好的解决。它可以使许多P2P应用程序受益,例如负载平衡分析、查询处理和数据挖掘。受随机变量生成反演方法的启发,本文提出了一种新的基于动态环的P2P网络的无分布数据密度估计模型,无论底层数据的分布模型如何,都能以较低的估计成本获得较高的估计精度。它通过对全局累积分布函数进行抽样,生成任意分布的随机样本,并且不存在抽样偏差。在P2P网络中,无分布估计的关键思想是对一小部分对等点进行采样,以估计数据域上的全局数据分布。介绍了用于估计全局数据分布的全局累积分布函数的计算和采样算法,并进行了详细的理论分析。我们广泛的性能研究证实了我们的方法在基于环的P2P网络中的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective Data Density Estimation in Ring-Based P2P Networks
Estimating the global data distribution in Peer-to-Peer (P2P) networks is an important issue and has yet to be well addressed. It can benefit many P2P applications, such as load balancing analysis, query processing, and data mining. Inspired by the inversion method for random variate generation, in this paper we present a novel model named distribution-free data density estimation for dynamic ring-based P2P networks to achieve high estimation accuracy with low estimation cost regardless of distribution models of the underlying data. It generates random samples for any arbitrary distribution by sampling the global cumulative distribution function and is free from sampling bias. In P2P networks, the key idea for distribution-free estimation is to sample a small subset of peers for estimating the global data distribution over the data domain. Algorithms on computing and sampling the global cumulative distribution function based on which global data distribution is estimated are introduced with detailed theoretical analysis. Our extensive performance study confirms the effectiveness and efficiency of our methods in ring-based P2P networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1