用于GaN顺序功率放大器行为建模的长短期记忆网络

Peng Chen, Yucheng Yu, Chao Yu
{"title":"用于GaN顺序功率放大器行为建模的长短期记忆网络","authors":"Peng Chen, Yucheng Yu, Chao Yu","doi":"10.1109/ICTA56932.2022.9963111","DOIUrl":null,"url":null,"abstract":"this paper investigates wideband behavioral modeling of Gallium Nitride (GaN) power amplifiers (PAs) using long short-term memory (LSTM) networks. Due to the memory mechanisms used in LSTM networks, they have the capability of accurately capturing both the short term and long term memory effects presenting in GaN PAs. The LSTM network-based model is verified experimentally on a GaN sequential power amplifier (SPA) under wideband multi-channel modulated signals, with showing good alignment between the modeled and measured data.","PeriodicalId":325602,"journal":{"name":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Long Short-Term Memory Networks for Behavioral Modeling of A GaN Sequential Power Amplifier\",\"authors\":\"Peng Chen, Yucheng Yu, Chao Yu\",\"doi\":\"10.1109/ICTA56932.2022.9963111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"this paper investigates wideband behavioral modeling of Gallium Nitride (GaN) power amplifiers (PAs) using long short-term memory (LSTM) networks. Due to the memory mechanisms used in LSTM networks, they have the capability of accurately capturing both the short term and long term memory effects presenting in GaN PAs. The LSTM network-based model is verified experimentally on a GaN sequential power amplifier (SPA) under wideband multi-channel modulated signals, with showing good alignment between the modeled and measured data.\",\"PeriodicalId\":325602,\"journal\":{\"name\":\"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTA56932.2022.9963111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA56932.2022.9963111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了基于长短期记忆(LSTM)网络的氮化镓(GaN)功率放大器(PAs)的宽带行为建模。由于LSTM网络中使用的记忆机制,它们具有准确捕获GaN PAs中出现的短期和长期记忆效应的能力。基于LSTM网络的模型在宽带多通道调制信号下的GaN顺序功率放大器(SPA)上进行了实验验证,结果表明模型与实测数据具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long Short-Term Memory Networks for Behavioral Modeling of A GaN Sequential Power Amplifier
this paper investigates wideband behavioral modeling of Gallium Nitride (GaN) power amplifiers (PAs) using long short-term memory (LSTM) networks. Due to the memory mechanisms used in LSTM networks, they have the capability of accurately capturing both the short term and long term memory effects presenting in GaN PAs. The LSTM network-based model is verified experimentally on a GaN sequential power amplifier (SPA) under wideband multi-channel modulated signals, with showing good alignment between the modeled and measured data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 4.2-to-5.6 GHz Transformer-Based PMOS-only Stacked-gm VCO in 28-nm CMOS A 0.58-pJ/bit 56-Gb/s PAM-4 Optical Receiver Frontend with an Envelope Tracker for Co-Packaged Optics in 40-nm CMOS CVD Monolayer tungsten-based PMOS Transistor with high performance at Vds = -1 V A 1000 fps Spiking Neural Network Tracking Algorithm for On-Chip Processing of Dynamic Vision Sensor Data Hardware Based RISC-V Instruction Set Randomization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1