基于贝叶斯模型的高速公路合流区交通冲突预测

Meng Lian, Bo Liu, Jing Luo
{"title":"基于贝叶斯模型的高速公路合流区交通冲突预测","authors":"Meng Lian, Bo Liu, Jing Luo","doi":"10.1109/ISTTCA53489.2021.9654586","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of complicated traffic flow and high accident safety risks in the expressway merging area, considering the discrete and heterogeneous characteristics of traffic conflict data, a Poisson-lognormal distribution model (PLN) and the random parameters Poisson-lognormal traffic conflict model (RP-PLN) were developed; The posterior distributions of the models parameters were estimated by Bayesian method and the Markov chain Monte Carlo (MCMC) simulation. The goodness-of-fit of models were compared by using the deviance information criterion. The results show that the goodness of fit of the random parameters Poisson-lognormal traffic conflict model (RP-PLN) is higher than that of the Poisson-lognormal distribution t model (PLN).","PeriodicalId":383266,"journal":{"name":"2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Traffic Conflict in Freeway Merging Area Based on Bayesian Model\",\"authors\":\"Meng Lian, Bo Liu, Jing Luo\",\"doi\":\"10.1109/ISTTCA53489.2021.9654586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of complicated traffic flow and high accident safety risks in the expressway merging area, considering the discrete and heterogeneous characteristics of traffic conflict data, a Poisson-lognormal distribution model (PLN) and the random parameters Poisson-lognormal traffic conflict model (RP-PLN) were developed; The posterior distributions of the models parameters were estimated by Bayesian method and the Markov chain Monte Carlo (MCMC) simulation. The goodness-of-fit of models were compared by using the deviance information criterion. The results show that the goodness of fit of the random parameters Poisson-lognormal traffic conflict model (RP-PLN) is higher than that of the Poisson-lognormal distribution t model (PLN).\",\"PeriodicalId\":383266,\"journal\":{\"name\":\"2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTTCA53489.2021.9654586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTTCA53489.2021.9654586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对高速公路合流区交通流复杂、事故安全风险高的问题,考虑到交通冲突数据的离散性和异质性特点,建立了泊松-对数正态分布模型(PLN)和随机参数泊松-对数正态交通冲突模型(RP-PLN);采用贝叶斯方法和马尔可夫链蒙特卡罗(MCMC)模拟估计了模型参数的后验分布。采用偏差信息准则对模型的拟合优度进行了比较。结果表明,随机参数泊松-对数正态交通冲突模型(RP-PLN)的拟合优度高于泊松-对数正态分布模型(PLN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Traffic Conflict in Freeway Merging Area Based on Bayesian Model
Aiming at the problems of complicated traffic flow and high accident safety risks in the expressway merging area, considering the discrete and heterogeneous characteristics of traffic conflict data, a Poisson-lognormal distribution model (PLN) and the random parameters Poisson-lognormal traffic conflict model (RP-PLN) were developed; The posterior distributions of the models parameters were estimated by Bayesian method and the Markov chain Monte Carlo (MCMC) simulation. The goodness-of-fit of models were compared by using the deviance information criterion. The results show that the goodness of fit of the random parameters Poisson-lognormal traffic conflict model (RP-PLN) is higher than that of the Poisson-lognormal distribution t model (PLN).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Route planning of aids to navigation inspection based on intelligent unmanned ship Advancing front packing of polygons based on Minkowski sum Evaluation of bearing capacity of single-span suspension bridge under load Test Prediction model of track quality index based on Genetic algorithm and support vector machine Experimental Research on Dynamic Performance of Viscous Fluid Damper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1