{"title":"基于贝叶斯模型的高速公路合流区交通冲突预测","authors":"Meng Lian, Bo Liu, Jing Luo","doi":"10.1109/ISTTCA53489.2021.9654586","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of complicated traffic flow and high accident safety risks in the expressway merging area, considering the discrete and heterogeneous characteristics of traffic conflict data, a Poisson-lognormal distribution model (PLN) and the random parameters Poisson-lognormal traffic conflict model (RP-PLN) were developed; The posterior distributions of the models parameters were estimated by Bayesian method and the Markov chain Monte Carlo (MCMC) simulation. The goodness-of-fit of models were compared by using the deviance information criterion. The results show that the goodness of fit of the random parameters Poisson-lognormal traffic conflict model (RP-PLN) is higher than that of the Poisson-lognormal distribution t model (PLN).","PeriodicalId":383266,"journal":{"name":"2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Traffic Conflict in Freeway Merging Area Based on Bayesian Model\",\"authors\":\"Meng Lian, Bo Liu, Jing Luo\",\"doi\":\"10.1109/ISTTCA53489.2021.9654586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of complicated traffic flow and high accident safety risks in the expressway merging area, considering the discrete and heterogeneous characteristics of traffic conflict data, a Poisson-lognormal distribution model (PLN) and the random parameters Poisson-lognormal traffic conflict model (RP-PLN) were developed; The posterior distributions of the models parameters were estimated by Bayesian method and the Markov chain Monte Carlo (MCMC) simulation. The goodness-of-fit of models were compared by using the deviance information criterion. The results show that the goodness of fit of the random parameters Poisson-lognormal traffic conflict model (RP-PLN) is higher than that of the Poisson-lognormal distribution t model (PLN).\",\"PeriodicalId\":383266,\"journal\":{\"name\":\"2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTTCA53489.2021.9654586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTTCA53489.2021.9654586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Traffic Conflict in Freeway Merging Area Based on Bayesian Model
Aiming at the problems of complicated traffic flow and high accident safety risks in the expressway merging area, considering the discrete and heterogeneous characteristics of traffic conflict data, a Poisson-lognormal distribution model (PLN) and the random parameters Poisson-lognormal traffic conflict model (RP-PLN) were developed; The posterior distributions of the models parameters were estimated by Bayesian method and the Markov chain Monte Carlo (MCMC) simulation. The goodness-of-fit of models were compared by using the deviance information criterion. The results show that the goodness of fit of the random parameters Poisson-lognormal traffic conflict model (RP-PLN) is higher than that of the Poisson-lognormal distribution t model (PLN).