考虑多通孔机制的可配置冗余通孔感知标准单元设计

Tsang-Chi Kan, Hung-Ming Hong, Ying-Jung Chen, S. Ruan
{"title":"考虑多通孔机制的可配置冗余通孔感知标准单元设计","authors":"Tsang-Chi Kan, Hung-Ming Hong, Ying-Jung Chen, S. Ruan","doi":"10.1109/ISQED.2013.6523629","DOIUrl":null,"url":null,"abstract":"Well designed redundant via-aware standard cells (SCs) can increase the redundant via1 insertion rate in cell-based designs. However, with conventional methods, manual and visual-based check are required to locate pins and tune geometries in layouts, which can be very time consuming and unreliable. Instead, an O(NlogN) via-aware standard cell optimization algorithm is developed. The proposed method considers various redundant via configurations such as double-via and rectangle-via which effectively increase the redundant via insertion rate for both concurrent routing and post-layout optimization. As a result, the proposed scheme not only addresses the problem of a low via1 insertion rate in nanometer regimes, but also demonstrates an efficient automatic layout optimizer for designing standard cells. Compared to the conventional standard library, the proposed method saves considerable design effort and time. Experimental results reveal that the proposed method effectively improves the redundant via1 insertion rate by a total of 26.3%.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Configurable redundant via-aware standard cell design considering multi-via mechanism\",\"authors\":\"Tsang-Chi Kan, Hung-Ming Hong, Ying-Jung Chen, S. Ruan\",\"doi\":\"10.1109/ISQED.2013.6523629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Well designed redundant via-aware standard cells (SCs) can increase the redundant via1 insertion rate in cell-based designs. However, with conventional methods, manual and visual-based check are required to locate pins and tune geometries in layouts, which can be very time consuming and unreliable. Instead, an O(NlogN) via-aware standard cell optimization algorithm is developed. The proposed method considers various redundant via configurations such as double-via and rectangle-via which effectively increase the redundant via insertion rate for both concurrent routing and post-layout optimization. As a result, the proposed scheme not only addresses the problem of a low via1 insertion rate in nanometer regimes, but also demonstrates an efficient automatic layout optimizer for designing standard cells. Compared to the conventional standard library, the proposed method saves considerable design effort and time. Experimental results reveal that the proposed method effectively improves the redundant via1 insertion rate by a total of 26.3%.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在基于细胞的设计中,设计良好的冗余过孔感知标准细胞(SCs)可以提高冗余过孔插入率。然而,使用传统方法,需要手动和基于视觉的检查来定位引脚和调整布局中的几何形状,这可能非常耗时且不可靠。取而代之的是,开发了一个O(NlogN)通过感知的标准单元优化算法。该方法考虑了双孔和矩形孔等冗余孔结构,有效地提高了冗余孔插入率,实现了并行布线和布局后优化。结果表明,该方案不仅解决了在纳米环境下低via1插入率的问题,而且为标准单元的设计提供了一种高效的自动布局优化器。与传统的标准库相比,该方法节省了大量的设计精力和时间。实验结果表明,该方法有效地将冗余via1插入率提高了26.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Configurable redundant via-aware standard cell design considering multi-via mechanism
Well designed redundant via-aware standard cells (SCs) can increase the redundant via1 insertion rate in cell-based designs. However, with conventional methods, manual and visual-based check are required to locate pins and tune geometries in layouts, which can be very time consuming and unreliable. Instead, an O(NlogN) via-aware standard cell optimization algorithm is developed. The proposed method considers various redundant via configurations such as double-via and rectangle-via which effectively increase the redundant via insertion rate for both concurrent routing and post-layout optimization. As a result, the proposed scheme not only addresses the problem of a low via1 insertion rate in nanometer regimes, but also demonstrates an efficient automatic layout optimizer for designing standard cells. Compared to the conventional standard library, the proposed method saves considerable design effort and time. Experimental results reveal that the proposed method effectively improves the redundant via1 insertion rate by a total of 26.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast FPGA-based fault injection tool for embedded processors Effective thermal control techniques for liquid-cooled 3D multi-core processors Analysis and reliability test to improve the data retention performance of EPROM circuits Increasing the security level of analog IPs by using a dedicated vulnerability analysis methodology Easy-to-build Arbiter Physical Unclonable Function with enhanced challenge/response set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1