多堆栈集成的工作推荐

T. Carpi, Marco Edemanti, Ervin Kamberoski, Elena Sacchi, P. Cremonesi, Roberto Pagano, Massimo Quadrana
{"title":"多堆栈集成的工作推荐","authors":"T. Carpi, Marco Edemanti, Ervin Kamberoski, Elena Sacchi, P. Cremonesi, Roberto Pagano, Massimo Quadrana","doi":"10.1145/2987538.2987541","DOIUrl":null,"url":null,"abstract":"This paper describes the approach that team PumpkinPie adopted in the 2016 Recsys Challenge. The task of the competition organized by XING is to predict which job postings the user has interacted with. The team's approach mainly consists in generating a set of models using different techniques, and then combining them in a multi-stack ensemble. This strategy granted the fourth position in the final leader-board to the team, with an overall score of 1.86M.","PeriodicalId":127880,"journal":{"name":"RecSys Challenge '16","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-stack ensemble for job recommendation\",\"authors\":\"T. Carpi, Marco Edemanti, Ervin Kamberoski, Elena Sacchi, P. Cremonesi, Roberto Pagano, Massimo Quadrana\",\"doi\":\"10.1145/2987538.2987541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the approach that team PumpkinPie adopted in the 2016 Recsys Challenge. The task of the competition organized by XING is to predict which job postings the user has interacted with. The team's approach mainly consists in generating a set of models using different techniques, and then combining them in a multi-stack ensemble. This strategy granted the fourth position in the final leader-board to the team, with an overall score of 1.86M.\",\"PeriodicalId\":127880,\"journal\":{\"name\":\"RecSys Challenge '16\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RecSys Challenge '16\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2987538.2987541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RecSys Challenge '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987538.2987541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文描述了PumpkinPie团队在2016年Recsys挑战赛中采用的方法。XING组织的竞赛任务是预测用户与哪些招聘广告进行了互动。该团队的方法主要包括使用不同的技术生成一组模型,然后将它们组合成一个多堆栈集成。这一策略使该队以总分1.86M的成绩在最终的排名榜上获得了第四名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-stack ensemble for job recommendation
This paper describes the approach that team PumpkinPie adopted in the 2016 Recsys Challenge. The task of the competition organized by XING is to predict which job postings the user has interacted with. The team's approach mainly consists in generating a set of models using different techniques, and then combining them in a multi-stack ensemble. This strategy granted the fourth position in the final leader-board to the team, with an overall score of 1.86M.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable, high-performance Algorithm for hybrid job recommendations A combination of simple models by forward predictor selection for job recommendation An ensemble method for job recommender systems Job recommendation with Hawkes process: an effective solution for RecSys Challenge 2016 A preliminary study on a recommender system for the job recommendation challenge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1