展望未来:使用集合技术预测公司基本面

Steven Downey
{"title":"展望未来:使用集合技术预测公司基本面","authors":"Steven Downey","doi":"10.2139/ssrn.3580018","DOIUrl":null,"url":null,"abstract":"Quantitative factor portfolios generally use historical company fundamental data in portfolio construction. What if we could forecast, with a small margin of error, the forward-looking company fundamentals? Using best practices from the science of forecasting and machine learning techniques, namely Random Forests and Gradient Boosting, I try to build a value composite model to sort portfolios based on forecasted fundamentals. I use the in-sample data to train the models to predict forward looking earnings, free cash flow, EBITDA, and Net Operating Profit After Taxes. The combined value portfolio out of sample did not produce statistically significant outperformance verses the equal weight portfolio (as a comparison to the long only value composite) or versus cash (for the long/short portfolio).","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gazing into the Future: Using Ensemble Techniques to Forecast Company Fundamentals\",\"authors\":\"Steven Downey\",\"doi\":\"10.2139/ssrn.3580018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantitative factor portfolios generally use historical company fundamental data in portfolio construction. What if we could forecast, with a small margin of error, the forward-looking company fundamentals? Using best practices from the science of forecasting and machine learning techniques, namely Random Forests and Gradient Boosting, I try to build a value composite model to sort portfolios based on forecasted fundamentals. I use the in-sample data to train the models to predict forward looking earnings, free cash flow, EBITDA, and Net Operating Profit After Taxes. The combined value portfolio out of sample did not produce statistically significant outperformance verses the equal weight portfolio (as a comparison to the long only value composite) or versus cash (for the long/short portfolio).\",\"PeriodicalId\":406435,\"journal\":{\"name\":\"CompSciRN: Other Machine Learning (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Other Machine Learning (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3580018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3580018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定量因子投资组合通常在投资组合构建中使用公司的历史基本面数据。如果我们能在很小的误差范围内预测出前瞻性的公司基本面,那会怎么样?利用预测科学和机器学习技术的最佳实践,即随机森林和梯度增强,我试图建立一个价值组合模型,根据预测的基本面对投资组合进行排序。我使用样本内数据来训练模型来预测前瞻性收益、自由现金流、EBITDA和税后净营业利润。样本外的组合价值投资组合与同等权重的投资组合(与只做多的价值组合相比)或与现金(多/空投资组合)相比,在统计上没有显著的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gazing into the Future: Using Ensemble Techniques to Forecast Company Fundamentals
Quantitative factor portfolios generally use historical company fundamental data in portfolio construction. What if we could forecast, with a small margin of error, the forward-looking company fundamentals? Using best practices from the science of forecasting and machine learning techniques, namely Random Forests and Gradient Boosting, I try to build a value composite model to sort portfolios based on forecasted fundamentals. I use the in-sample data to train the models to predict forward looking earnings, free cash flow, EBITDA, and Net Operating Profit After Taxes. The combined value portfolio out of sample did not produce statistically significant outperformance verses the equal weight portfolio (as a comparison to the long only value composite) or versus cash (for the long/short portfolio).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing The Implicit Model Selection Tradeoff Troubleshooting: a Dynamic Solution for Achieving Reliable Fault Detection by Combining Augmented Reality and Machine Learning Policy Optimization Using Semiparametric Models for Dynamic Pricing Policy Gradient Methods Find the Nash Equilibrium in N-player General-sum Linear-quadratic Games Deep Learning under Model Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1