基于关联函数和神经网络的级联自由搜索差分进化算法在非线性系统辨识中的应用

H. V. Ayala, L. F. D. Cruz, R. Z. Freire, L. Coelho
{"title":"基于关联函数和神经网络的级联自由搜索差分进化算法在非线性系统辨识中的应用","authors":"H. V. Ayala, L. F. D. Cruz, R. Z. Freire, L. Coelho","doi":"10.1109/CICA.2014.7013239","DOIUrl":null,"url":null,"abstract":"This paper presents a procedure for input selection and parameter estimation for system identification based on Radial Basis Functions Neural Networks (RBFNNs) models and Free Search Differential Evolution (FSDE). We adopt a cascaded evolutionary algorithm approach and problem decomposition to define the model orders and the related model parameters based on higher orders correlation functions. Thus, we adopt two distinct populations: the first to select the lags on the inputs and outputs of the system and the second to define the parameters for the RBFNN. We show the results when the proposed methodology is applied to model a coupled drives system with real acquired data. We use to this end the canonical binary genetic algorithm (selection of lags) and the recently proposed FSDE (definition of the model parameters), which is very convenient for the present problem for having few control parameters. The results show the validity of the approach when compared to a classical input selection algorithm.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Cascaded free search differential evolution applied to nonlinear system identification based on correlation functions and neural networks\",\"authors\":\"H. V. Ayala, L. F. D. Cruz, R. Z. Freire, L. Coelho\",\"doi\":\"10.1109/CICA.2014.7013239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a procedure for input selection and parameter estimation for system identification based on Radial Basis Functions Neural Networks (RBFNNs) models and Free Search Differential Evolution (FSDE). We adopt a cascaded evolutionary algorithm approach and problem decomposition to define the model orders and the related model parameters based on higher orders correlation functions. Thus, we adopt two distinct populations: the first to select the lags on the inputs and outputs of the system and the second to define the parameters for the RBFNN. We show the results when the proposed methodology is applied to model a coupled drives system with real acquired data. We use to this end the canonical binary genetic algorithm (selection of lags) and the recently proposed FSDE (definition of the model parameters), which is very convenient for the present problem for having few control parameters. The results show the validity of the approach when compared to a classical input selection algorithm.\",\"PeriodicalId\":340740,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2014.7013239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于径向基函数神经网络(RBFNNs)模型和自由搜索差分进化(FSDE)的系统辨识输入选择和参数估计方法。采用级联进化算法和基于高阶相关函数的问题分解来定义模型阶数和相关模型参数。因此,我们采用两个不同的总体:第一个用于选择系统输入和输出上的滞后,第二个用于定义RBFNN的参数。我们展示了将所提出的方法应用于耦合驱动系统的真实采集数据建模时的结果。为此,我们采用了典型的二值遗传算法(滞后选择)和最近提出的FSDE(模型参数定义),这对于目前控制参数较少的问题非常方便。结果表明,该方法与传统的输入选择算法相比是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cascaded free search differential evolution applied to nonlinear system identification based on correlation functions and neural networks
This paper presents a procedure for input selection and parameter estimation for system identification based on Radial Basis Functions Neural Networks (RBFNNs) models and Free Search Differential Evolution (FSDE). We adopt a cascaded evolutionary algorithm approach and problem decomposition to define the model orders and the related model parameters based on higher orders correlation functions. Thus, we adopt two distinct populations: the first to select the lags on the inputs and outputs of the system and the second to define the parameters for the RBFNN. We show the results when the proposed methodology is applied to model a coupled drives system with real acquired data. We use to this end the canonical binary genetic algorithm (selection of lags) and the recently proposed FSDE (definition of the model parameters), which is very convenient for the present problem for having few control parameters. The results show the validity of the approach when compared to a classical input selection algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-class LS-SVM with zero leave-one-out error Enumeration of reachable, forbidden, live states of gen-left k-net system (with a non-sharing resource place) of Petri Nets Context-based adaptive robot behavior learning model (CARB-LM) New multiagent coordination optimization algorithms for mixed-binary nonlinear programming with control applications Ultra high frequency polynomial and sine artificial higher order neural networks for control signal generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1