基于迁移学习的稀疏数据集物理增强损伤分类

M. Todisco, Z. Mao
{"title":"基于迁移学习的稀疏数据集物理增强损伤分类","authors":"M. Todisco, Z. Mao","doi":"10.12783/shm2021/36292","DOIUrl":null,"url":null,"abstract":"High-rate, high-acceleration dynamic events produce especially limited and sparse data for two main reasons: high-acceleration loadings can destroy the test article, and the required laboratory equipment is typically expensive and complicated to operate. In many cases, these limitations prevent researchers from collecting additional data, driving the need for machine learning algorithms that utilize small datasets. Despite deep learning’s preference for thousands or millions of training examples, the dataset considered in this work contains only six independent examples. Finite element analysis software simulates the dynamic response of an electronic structure, supplementing this small dataset with additional training examples. A hybrid deep learning model first learns the dynamic response of the simulated structure and is then adapted to predict the actual electronic structure’s damage levels. This work shows that physics-enhanced transfer learning improves structural damage classification accuracy (𝑃 = 0.0879).","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PHYSICS-ENHANCED DAMAGE CLASSIFICATION OF SPARSE DATASETS USING TRANSFER LEARNING\",\"authors\":\"M. Todisco, Z. Mao\",\"doi\":\"10.12783/shm2021/36292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-rate, high-acceleration dynamic events produce especially limited and sparse data for two main reasons: high-acceleration loadings can destroy the test article, and the required laboratory equipment is typically expensive and complicated to operate. In many cases, these limitations prevent researchers from collecting additional data, driving the need for machine learning algorithms that utilize small datasets. Despite deep learning’s preference for thousands or millions of training examples, the dataset considered in this work contains only six independent examples. Finite element analysis software simulates the dynamic response of an electronic structure, supplementing this small dataset with additional training examples. A hybrid deep learning model first learns the dynamic response of the simulated structure and is then adapted to predict the actual electronic structure’s damage levels. This work shows that physics-enhanced transfer learning improves structural damage classification accuracy (𝑃 = 0.0879).\",\"PeriodicalId\":180083,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/shm2021/36292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高速率、高加速度的动态事件产生的数据特别有限和稀疏,主要有两个原因:高加速度加载可能破坏测试件,所需的实验室设备通常昂贵且操作复杂。在许多情况下,这些限制阻碍了研究人员收集额外的数据,从而推动了对利用小数据集的机器学习算法的需求。尽管深度学习倾向于数千或数百万个训练示例,但本工作中考虑的数据集仅包含6个独立示例。有限元分析软件模拟电子结构的动态响应,用额外的训练示例补充这个小数据集。混合深度学习模型首先学习模拟结构的动态响应,然后适应预测实际电子结构的损伤水平。这项工作表明,物理增强的迁移学习提高了结构损伤分类精度(p < 0.05 = 0.0879)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PHYSICS-ENHANCED DAMAGE CLASSIFICATION OF SPARSE DATASETS USING TRANSFER LEARNING
High-rate, high-acceleration dynamic events produce especially limited and sparse data for two main reasons: high-acceleration loadings can destroy the test article, and the required laboratory equipment is typically expensive and complicated to operate. In many cases, these limitations prevent researchers from collecting additional data, driving the need for machine learning algorithms that utilize small datasets. Despite deep learning’s preference for thousands or millions of training examples, the dataset considered in this work contains only six independent examples. Finite element analysis software simulates the dynamic response of an electronic structure, supplementing this small dataset with additional training examples. A hybrid deep learning model first learns the dynamic response of the simulated structure and is then adapted to predict the actual electronic structure’s damage levels. This work shows that physics-enhanced transfer learning improves structural damage classification accuracy (𝑃 = 0.0879).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NONLINEAR BULK WAVE PROPAGATION IN A MATERIAL WITH RANDOMLY DISTRIBUTED SYMMETRIC AND ASYMMETRIC HYSTERETIC NONLINEARITY SPATIAL FILTERING TECHNIQUE-BASED ENHANCEMENT OF THE RECONSTRUCTION ALGORITHM FOR THE PROBABILISTIC INSPECTION OF DAMAGE (RAPID) KOOPMAN OPERATOR BASED FAULT DIAGNOSTIC METHODS FOR MECHANICAL SYSTEMS ON THE APPLICATION OF VARIATIONAL AUTO ENCODERS (VAE) FOR DAMAGE DETECTION IN ROLLING ELEMENT BEARINGS INTELLIGENT IDENTIFICATION OF RIVET CORROSION ON STEEL TRUSS BRIDGE BY SINGLE-STAGE DETECTION NETWORK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1