基于三维有序多级微结构的超高灵敏度柔性激光刻划压力传感器

Rui Chen, Qian Wan, Tao Luo, Chen Zhang, Xuyang Chu, Wei Zhou
{"title":"基于三维有序多级微结构的超高灵敏度柔性激光刻划压力传感器","authors":"Rui Chen, Qian Wan, Tao Luo, Chen Zhang, Xuyang Chu, Wei Zhou","doi":"10.1109/NEMS57332.2023.10190919","DOIUrl":null,"url":null,"abstract":"This paper describes a piezoresistive flexible pressure sensor based on multilevel microstructure, fabricated through infrared picosecond laser technology. Our systematic study of the impact of laser processing parameters on microstructure morphology led to the creation of single-level, double-level, and triple-level 3D-ordered microstructure-based sensors. Experimental results demonstrate that the triple-level microstructure sensor exhibits an ultra-high sensitivity of 138.6 kP$\\mathrm{a}^{-1}$ and a wide linear range of 400 kPa, surpassing the sensitivity of the single-level sensor of 10.5 kP$\\mathrm{a}^{-1}$ by 1300%. Moreover, it also surpasses single-level and double-level microstructure-based sensors in terms of measurement range and linearity. Finite element analysis confirms that the sensor based on the triple-level microstructure is more sensitive than sensors based on single-level and double-level microstructures. The proposed method for tailoring microstructure morphology has significant potential for developing pressure sensors with high sensitivity and wide linear range.","PeriodicalId":142575,"journal":{"name":"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-Ordered Multilevel Microstructures-Based Flexible Pressure Sensor with Ultra-High Sensitivity Utilizing Laser Scribing\",\"authors\":\"Rui Chen, Qian Wan, Tao Luo, Chen Zhang, Xuyang Chu, Wei Zhou\",\"doi\":\"10.1109/NEMS57332.2023.10190919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a piezoresistive flexible pressure sensor based on multilevel microstructure, fabricated through infrared picosecond laser technology. Our systematic study of the impact of laser processing parameters on microstructure morphology led to the creation of single-level, double-level, and triple-level 3D-ordered microstructure-based sensors. Experimental results demonstrate that the triple-level microstructure sensor exhibits an ultra-high sensitivity of 138.6 kP$\\\\mathrm{a}^{-1}$ and a wide linear range of 400 kPa, surpassing the sensitivity of the single-level sensor of 10.5 kP$\\\\mathrm{a}^{-1}$ by 1300%. Moreover, it also surpasses single-level and double-level microstructure-based sensors in terms of measurement range and linearity. Finite element analysis confirms that the sensor based on the triple-level microstructure is more sensitive than sensors based on single-level and double-level microstructures. The proposed method for tailoring microstructure morphology has significant potential for developing pressure sensors with high sensitivity and wide linear range.\",\"PeriodicalId\":142575,\"journal\":{\"name\":\"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS57332.2023.10190919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS57332.2023.10190919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用红外皮秒激光技术制备的多级微结构压阻式柔性压力传感器。我们对激光加工参数对微结构形貌影响的系统研究导致了单级,双级和三级3d有序微结构传感器的创建。实验结果表明,三电平微结构传感器具有138.6 kP$\mathrm{a}^{-1}$的超高灵敏度和400 kPa的宽线性范围,比单电平传感器10.5 kP$\mathrm{a}^{-1}$的灵敏度高出1300%。此外,在测量范围和线性度方面也优于单级和双级微结构传感器。有限元分析证实,基于三级微结构的传感器比基于单层和双层微结构的传感器灵敏度更高。该方法具有开发高灵敏度、宽线性范围压力传感器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D-Ordered Multilevel Microstructures-Based Flexible Pressure Sensor with Ultra-High Sensitivity Utilizing Laser Scribing
This paper describes a piezoresistive flexible pressure sensor based on multilevel microstructure, fabricated through infrared picosecond laser technology. Our systematic study of the impact of laser processing parameters on microstructure morphology led to the creation of single-level, double-level, and triple-level 3D-ordered microstructure-based sensors. Experimental results demonstrate that the triple-level microstructure sensor exhibits an ultra-high sensitivity of 138.6 kP$\mathrm{a}^{-1}$ and a wide linear range of 400 kPa, surpassing the sensitivity of the single-level sensor of 10.5 kP$\mathrm{a}^{-1}$ by 1300%. Moreover, it also surpasses single-level and double-level microstructure-based sensors in terms of measurement range and linearity. Finite element analysis confirms that the sensor based on the triple-level microstructure is more sensitive than sensors based on single-level and double-level microstructures. The proposed method for tailoring microstructure morphology has significant potential for developing pressure sensors with high sensitivity and wide linear range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Easily Adjusting Capillary Flow Rates on Nitrocellulose Membranes by a Household Laminator Embedded manifold cooling for efficient thermal management of flexible electronics An Improved SOI-on-Glass Fabrication Method of Large-Area Sheeting of MEMS Isolator A novel electrodes design for in-plane measurement of single-structure multi-axis MEMS inertial devices A Novel Method for Packaging Microfluidic Thread-based Analytical Devices by Encapsulating Threads into Thermal Contraction Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1