一种基于频率的激光金属沉积层对层控制设计环路成形方法

Michelle L. Gegel, D. Bristow, R. Landers
{"title":"一种基于频率的激光金属沉积层对层控制设计环路成形方法","authors":"Michelle L. Gegel, D. Bristow, R. Landers","doi":"10.23919/ACC45564.2020.9147878","DOIUrl":null,"url":null,"abstract":"Additive manufacturing processes fabricate parts in a layer-by-layer fashion, depositing material along a predefined path before incrementing to the next layer. Although the thickness of any given layer is bounded, in-layer dynamics can couple with layer-to-layer dynamics such that height defects amplify from one layer to the next. This is considered instability in the layer domain. By considering each layer as an iteration, additive processes can be categorized as repetitive processes. Although Repetitive Process Control (RPC) algorithms exist that can stabilize the process and converge to desired reference, it is typically assumed that the reference and disturbance are constant from layer to layer. In this paper, the problem of tracking references (layer thicknesses) that change from layer to layer is considered. The bandwidth of the changing references is considered bounded in both the spatial and layer domains. A loop-shaping design process is then considered, in which the bounds are mapped to a bound on the two-dimensional sensitivity function and projected onto weighting filters in an LQR control formulation. The layer-to-layer controller is then constructed from traditional LQR methods. The controller is demonstrated on a simulation of laser metal deposition for a wavy wall build having frequency content in both the spatial and layer domains.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Loop-Shaping Method for Frequency-Based Design of Layer-to-Layer Control for Laser Metal Deposition\",\"authors\":\"Michelle L. Gegel, D. Bristow, R. Landers\",\"doi\":\"10.23919/ACC45564.2020.9147878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing processes fabricate parts in a layer-by-layer fashion, depositing material along a predefined path before incrementing to the next layer. Although the thickness of any given layer is bounded, in-layer dynamics can couple with layer-to-layer dynamics such that height defects amplify from one layer to the next. This is considered instability in the layer domain. By considering each layer as an iteration, additive processes can be categorized as repetitive processes. Although Repetitive Process Control (RPC) algorithms exist that can stabilize the process and converge to desired reference, it is typically assumed that the reference and disturbance are constant from layer to layer. In this paper, the problem of tracking references (layer thicknesses) that change from layer to layer is considered. The bandwidth of the changing references is considered bounded in both the spatial and layer domains. A loop-shaping design process is then considered, in which the bounds are mapped to a bound on the two-dimensional sensitivity function and projected onto weighting filters in an LQR control formulation. The layer-to-layer controller is then constructed from traditional LQR methods. The controller is demonstrated on a simulation of laser metal deposition for a wavy wall build having frequency content in both the spatial and layer domains.\",\"PeriodicalId\":288450,\"journal\":{\"name\":\"2020 American Control Conference (ACC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC45564.2020.9147878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC45564.2020.9147878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

增材制造工艺以一层接一层的方式制造零件,在增加到下一层之前,沿着预定义的路径沉积材料。尽管任何给定层的厚度是有限的,但层内动力学可以与层间动力学耦合,使得高度缺陷从一层放大到下一层。这被认为是层域的不稳定性。通过将每一层视为一个迭代,可将附加过程归类为重复过程。虽然现有的重复性过程控制(RPC)算法可以稳定过程并收敛到期望的参考点,但通常假设参考点和干扰在每层之间都是恒定的。本文考虑了跟踪参考点(层厚度)随层间变化的问题。变化参考点的带宽在空间和层域都被认为是有界的。然后考虑了一个环形设计过程,其中将边界映射到二维灵敏度函数的边界上,并将其投影到LQR控制公式中的加权滤波器上。然后根据传统的LQR方法构造层对层控制器。该控制器在具有空间和层域频率内容的波浪形壁的激光金属沉积模拟中进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Loop-Shaping Method for Frequency-Based Design of Layer-to-Layer Control for Laser Metal Deposition
Additive manufacturing processes fabricate parts in a layer-by-layer fashion, depositing material along a predefined path before incrementing to the next layer. Although the thickness of any given layer is bounded, in-layer dynamics can couple with layer-to-layer dynamics such that height defects amplify from one layer to the next. This is considered instability in the layer domain. By considering each layer as an iteration, additive processes can be categorized as repetitive processes. Although Repetitive Process Control (RPC) algorithms exist that can stabilize the process and converge to desired reference, it is typically assumed that the reference and disturbance are constant from layer to layer. In this paper, the problem of tracking references (layer thicknesses) that change from layer to layer is considered. The bandwidth of the changing references is considered bounded in both the spatial and layer domains. A loop-shaping design process is then considered, in which the bounds are mapped to a bound on the two-dimensional sensitivity function and projected onto weighting filters in an LQR control formulation. The layer-to-layer controller is then constructed from traditional LQR methods. The controller is demonstrated on a simulation of laser metal deposition for a wavy wall build having frequency content in both the spatial and layer domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metric Interval Temporal Logic based Reinforcement Learning with Runtime Monitoring and Self-Correction Boundary Control of Coupled Hyperbolic PDEs for Two-dimensional Vibration Suppression of a Deep-sea Construction Vessel Localizing Data Manipulators in Distributed Mode Shape Identification of Power Systems Boundary prescribed–time stabilization of a pair of coupled reaction–diffusion equations An Optimization-Based Iterative Learning Control Design Method for UAV’s Trajectory Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1