评估基于图像的家庭环境感知认知api的可行性

Sinan Chen, S. Saiki, Masahide Nakamura
{"title":"评估基于图像的家庭环境感知认知api的可行性","authors":"Sinan Chen, S. Saiki, Masahide Nakamura","doi":"10.1109/CSPIS.2018.8642772","DOIUrl":null,"url":null,"abstract":"Cognitive API is API of emerging AI-based cloud services, which extracts various contextual information from non-numerical multimedia data including image and audio. Our interest is to apply image-based cognitive APIs to implement smart and affordable context sensing services in a smart home. However, since the existing APIs are trained for general-purpose image recognition, they may not be of practical use in specific configuration of smart homes. In this paper, we therefore propose a method that evaluates the feasibility of cognitive APIs for the home context sensing. In the proposed method, we exploit document similarity measures to see how well tags extracted from given images characterize the original contexts. Using the proposed method, we evaluate practical APIs of Microsoft Azure, IBM Watson, and Google Cloud for recognizing 11 different contexts in our smart home.","PeriodicalId":251356,"journal":{"name":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","volume":"37 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evaluating Feasibility of Image-Based Cognitive APIs for Home Context Sensing\",\"authors\":\"Sinan Chen, S. Saiki, Masahide Nakamura\",\"doi\":\"10.1109/CSPIS.2018.8642772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive API is API of emerging AI-based cloud services, which extracts various contextual information from non-numerical multimedia data including image and audio. Our interest is to apply image-based cognitive APIs to implement smart and affordable context sensing services in a smart home. However, since the existing APIs are trained for general-purpose image recognition, they may not be of practical use in specific configuration of smart homes. In this paper, we therefore propose a method that evaluates the feasibility of cognitive APIs for the home context sensing. In the proposed method, we exploit document similarity measures to see how well tags extracted from given images characterize the original contexts. Using the proposed method, we evaluate practical APIs of Microsoft Azure, IBM Watson, and Google Cloud for recognizing 11 different contexts in our smart home.\",\"PeriodicalId\":251356,\"journal\":{\"name\":\"2018 International Conference on Signal Processing and Information Security (ICSPIS)\",\"volume\":\"37 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Signal Processing and Information Security (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPIS.2018.8642772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPIS.2018.8642772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

认知API是一种新兴的基于人工智能的云服务API,它可以从包括图像和音频在内的非数字多媒体数据中提取各种上下文信息。我们的兴趣是应用基于图像的认知api,在智能家居中实现智能和负担得起的上下文感知服务。然而,由于现有的api是针对通用图像识别进行训练的,因此它们可能无法在智能家居的特定配置中实际使用。因此,在本文中,我们提出了一种评估家庭环境感知认知api可行性的方法。在提出的方法中,我们利用文档相似度度量来查看从给定图像中提取的标签如何很好地表征原始上下文。使用提出的方法,我们评估了Microsoft Azure, IBM Watson和谷歌Cloud的实用api,以识别我们智能家居中的11种不同环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Feasibility of Image-Based Cognitive APIs for Home Context Sensing
Cognitive API is API of emerging AI-based cloud services, which extracts various contextual information from non-numerical multimedia data including image and audio. Our interest is to apply image-based cognitive APIs to implement smart and affordable context sensing services in a smart home. However, since the existing APIs are trained for general-purpose image recognition, they may not be of practical use in specific configuration of smart homes. In this paper, we therefore propose a method that evaluates the feasibility of cognitive APIs for the home context sensing. In the proposed method, we exploit document similarity measures to see how well tags extracted from given images characterize the original contexts. Using the proposed method, we evaluate practical APIs of Microsoft Azure, IBM Watson, and Google Cloud for recognizing 11 different contexts in our smart home.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing a performant security control for Industrial Ethernet Hindrances in the Fitness Landscape and Remedies to Achieve Optimization Low Complexity Receivers for Massive MIMO Cloud Radio Access Systems Using Virtual Agent for Facilitating Online Questionnaire Surveys Autonomous Building Detection Using Region Properties and PCA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1