Yefei Zhang, Zhidong Zhao, Chunwei Guo, Jingzhou Huang, K. Xu
{"title":"基于卷积神经网络和迁移学习的心电生物识别方法","authors":"Yefei Zhang, Zhidong Zhao, Chunwei Guo, Jingzhou Huang, K. Xu","doi":"10.1109/ICMLC48188.2019.8949218","DOIUrl":null,"url":null,"abstract":"Personal identification based on ECG signals has been a significant challenge. The performance of an ECG authentication system depends significantly on the features extracted and the classifier subsequently applied. Although recently the deep neural networks based approaches featuring adaptive feature extractions and inherent classifications have attracted attention, they usually require a substantial set of training data. Aiming at tackling these issues, this paper presents a convolutional neural network-based transfer learning approach. It includes transferring the big data-trained GoogLeNet model into our identification task, fine-tuning the model using the ‘finetune’ idea, and adding three adaptive layers behind the original feature layer. The proposed approach not only requires a small set of training data, but also obtains great performance.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ECG Biometrics Method Based on Convolutional Neural Network and Transfer Learning\",\"authors\":\"Yefei Zhang, Zhidong Zhao, Chunwei Guo, Jingzhou Huang, K. Xu\",\"doi\":\"10.1109/ICMLC48188.2019.8949218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal identification based on ECG signals has been a significant challenge. The performance of an ECG authentication system depends significantly on the features extracted and the classifier subsequently applied. Although recently the deep neural networks based approaches featuring adaptive feature extractions and inherent classifications have attracted attention, they usually require a substantial set of training data. Aiming at tackling these issues, this paper presents a convolutional neural network-based transfer learning approach. It includes transferring the big data-trained GoogLeNet model into our identification task, fine-tuning the model using the ‘finetune’ idea, and adding three adaptive layers behind the original feature layer. The proposed approach not only requires a small set of training data, but also obtains great performance.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ECG Biometrics Method Based on Convolutional Neural Network and Transfer Learning
Personal identification based on ECG signals has been a significant challenge. The performance of an ECG authentication system depends significantly on the features extracted and the classifier subsequently applied. Although recently the deep neural networks based approaches featuring adaptive feature extractions and inherent classifications have attracted attention, they usually require a substantial set of training data. Aiming at tackling these issues, this paper presents a convolutional neural network-based transfer learning approach. It includes transferring the big data-trained GoogLeNet model into our identification task, fine-tuning the model using the ‘finetune’ idea, and adding three adaptive layers behind the original feature layer. The proposed approach not only requires a small set of training data, but also obtains great performance.