基于机器学习的调制分类性能分析

N. G, Vishnupriya Vijayan, R. Jose
{"title":"基于机器学习的调制分类性能分析","authors":"N. G, Vishnupriya Vijayan, R. Jose","doi":"10.1109/ICSCC51209.2021.9528172","DOIUrl":null,"url":null,"abstract":"Automatic modulation classification is used to identify the modulation scheme of the received signal, without prior knowledge of system parameters. In this work, we compare the performance of modulation classification in additive white gaussian noise channel using a conventional method and a deep learning-based method. Firstly, we classified the modulation schemes using a likelihood-based classifier. Another classifier is also implemented by exploiting the estimated probability density function. Next, a feature-based learning technique using a feedforward neural network was executed. We have analyzed this for digital modulation schemes like BPSK, QPSK, and 16-QAM. The performance of each modulation classification technique in different signal-to-noise ratios is tabulated.","PeriodicalId":382982,"journal":{"name":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","volume":"13 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Modulation Classification Using Machine learning\",\"authors\":\"N. G, Vishnupriya Vijayan, R. Jose\",\"doi\":\"10.1109/ICSCC51209.2021.9528172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic modulation classification is used to identify the modulation scheme of the received signal, without prior knowledge of system parameters. In this work, we compare the performance of modulation classification in additive white gaussian noise channel using a conventional method and a deep learning-based method. Firstly, we classified the modulation schemes using a likelihood-based classifier. Another classifier is also implemented by exploiting the estimated probability density function. Next, a feature-based learning technique using a feedforward neural network was executed. We have analyzed this for digital modulation schemes like BPSK, QPSK, and 16-QAM. The performance of each modulation classification technique in different signal-to-noise ratios is tabulated.\",\"PeriodicalId\":382982,\"journal\":{\"name\":\"2021 8th International Conference on Smart Computing and Communications (ICSCC)\",\"volume\":\"13 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Smart Computing and Communications (ICSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCC51209.2021.9528172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCC51209.2021.9528172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动调制分类用于识别接收信号的调制方案,而不需要事先知道系统参数。在这项工作中,我们比较了使用传统方法和基于深度学习的方法在加性高斯白噪声信道中的调制分类性能。首先,我们使用基于似然的分类器对调制方案进行分类。另一个分类器也是利用估计的概率密度函数实现的。其次,采用前馈神经网络进行基于特征的学习。我们对BPSK、QPSK和16-QAM等数字调制方案进行了分析。每种调制分类技术在不同信噪比下的性能被制成表格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of Modulation Classification Using Machine learning
Automatic modulation classification is used to identify the modulation scheme of the received signal, without prior knowledge of system parameters. In this work, we compare the performance of modulation classification in additive white gaussian noise channel using a conventional method and a deep learning-based method. Firstly, we classified the modulation schemes using a likelihood-based classifier. Another classifier is also implemented by exploiting the estimated probability density function. Next, a feature-based learning technique using a feedforward neural network was executed. We have analyzed this for digital modulation schemes like BPSK, QPSK, and 16-QAM. The performance of each modulation classification technique in different signal-to-noise ratios is tabulated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FYEO : A Character Level Model For Lip Reading Parameter Dependencies and Optimization of True Random Number Generator (TRNG) using Genetic Algorithm (GA) Chaotic Time Series Prediction Model for Fractional-Order Duffing's Oscillator Segmentation of Brain Tumour in MR Images Using Modified Deep Learning Network Classification of Power Quality Disturbances in Emerging Power System with Distributed Generation Using Space Phasor Model and Normalized Cross Correlation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1