针对软错误漏洞缓解的高级综合中的成本效益调度

Yuko Hara-Azumi, H. Tomiyama
{"title":"针对软错误漏洞缓解的高级综合中的成本效益调度","authors":"Yuko Hara-Azumi, H. Tomiyama","doi":"10.1109/ISQED.2013.6523658","DOIUrl":null,"url":null,"abstract":"Due to the continuous reduction in chip feature size and supply voltage, soft errors are becoming a serious problem in the today's LSI design. Most literature on system-level design techniques has been conventionally tackling this issue by spatial and/or temporal modular redundancy, whose cost in circuit area and performance is large. This paper proposes a soft error-aware scheduling method in high-level synthesis (HLS), which does not rely on such expensive, conventional techniques. The reliability of the datapath circuit is determined not only by that of hardware resources to which operations and values are assigned, but also that of their active time (i.e., time during which operational results should be correct). By considering both of these factors, our proposed method schedules operations so that the reliability of HLS-generated datapath circuits can be maximized under designer-given area/latency constraints. Experimental results demonstrate the effectiveness of our method over existing methods, especially for strict area/latency constraints.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Cost-efficient scheduling in high-level synthesis for Soft-Error Vulnerability Mitigation\",\"authors\":\"Yuko Hara-Azumi, H. Tomiyama\",\"doi\":\"10.1109/ISQED.2013.6523658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the continuous reduction in chip feature size and supply voltage, soft errors are becoming a serious problem in the today's LSI design. Most literature on system-level design techniques has been conventionally tackling this issue by spatial and/or temporal modular redundancy, whose cost in circuit area and performance is large. This paper proposes a soft error-aware scheduling method in high-level synthesis (HLS), which does not rely on such expensive, conventional techniques. The reliability of the datapath circuit is determined not only by that of hardware resources to which operations and values are assigned, but also that of their active time (i.e., time during which operational results should be correct). By considering both of these factors, our proposed method schedules operations so that the reliability of HLS-generated datapath circuits can be maximized under designer-given area/latency constraints. Experimental results demonstrate the effectiveness of our method over existing methods, especially for strict area/latency constraints.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

由于芯片特征尺寸和电源电压的不断减小,软误差正在成为当今LSI设计中的一个严重问题。大多数关于系统级设计技术的文献传统上都是通过空间和/或时间模块冗余来解决这个问题,这在电路面积和性能上的成本很大。本文提出了一种高级综合(HLS)中的软错误感知调度方法,该方法不依赖于昂贵的传统技术。数据路径电路的可靠性不仅取决于分配给其操作和值的硬件资源的可靠性,还取决于它们的活动时间(即操作结果应该正确的时间)。通过考虑这两个因素,我们提出的方法调度操作,使hls生成的数据路径电路的可靠性可以在设计人员给定的面积/延迟约束下最大化。实验结果证明了我们的方法比现有方法的有效性,特别是在严格的面积/延迟约束下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost-efficient scheduling in high-level synthesis for Soft-Error Vulnerability Mitigation
Due to the continuous reduction in chip feature size and supply voltage, soft errors are becoming a serious problem in the today's LSI design. Most literature on system-level design techniques has been conventionally tackling this issue by spatial and/or temporal modular redundancy, whose cost in circuit area and performance is large. This paper proposes a soft error-aware scheduling method in high-level synthesis (HLS), which does not rely on such expensive, conventional techniques. The reliability of the datapath circuit is determined not only by that of hardware resources to which operations and values are assigned, but also that of their active time (i.e., time during which operational results should be correct). By considering both of these factors, our proposed method schedules operations so that the reliability of HLS-generated datapath circuits can be maximized under designer-given area/latency constraints. Experimental results demonstrate the effectiveness of our method over existing methods, especially for strict area/latency constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast FPGA-based fault injection tool for embedded processors Effective thermal control techniques for liquid-cooled 3D multi-core processors Analysis and reliability test to improve the data retention performance of EPROM circuits Increasing the security level of analog IPs by using a dedicated vulnerability analysis methodology Easy-to-build Arbiter Physical Unclonable Function with enhanced challenge/response set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1