A. Shackelford, J. de Graaf, S. Talapatra, K. Gerlach, S. Blunt
{"title":"共享频谱多基地雷达:初步实验结果","authors":"A. Shackelford, J. de Graaf, S. Talapatra, K. Gerlach, S. Blunt","doi":"10.1109/WDDC.2007.4339458","DOIUrl":null,"url":null,"abstract":"In this paper we present preliminary experimental results demonstrating the ability of the multistatic adaptive pulse compression (MAPC) algorithm to suppress the mutual-interference generated by shared-spectrum radar signals, thus enabling shared-spectrum radar. The MAPC algorithm, a waveform diversity technique wherein multiple known transmitted waveforms are adaptively pulse compressed using reiterative minimum mean-square error (RMMSE) estimation, has been shown to successfully suppress both range sidelobes and interference from multiple radars operating in the same spectrum. In this paper, we present initial experimental results from the adaptive pulse compression (APC) test bed that demonstrate the ability of MAPC to mitigate both the mutual interference from multiple radars and pulse compression range sidelobes when applied to measured data.","PeriodicalId":142822,"journal":{"name":"2007 International Waveform Diversity and Design Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Shared-spectrum multistatic radar: Preliminary experimental results\",\"authors\":\"A. Shackelford, J. de Graaf, S. Talapatra, K. Gerlach, S. Blunt\",\"doi\":\"10.1109/WDDC.2007.4339458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present preliminary experimental results demonstrating the ability of the multistatic adaptive pulse compression (MAPC) algorithm to suppress the mutual-interference generated by shared-spectrum radar signals, thus enabling shared-spectrum radar. The MAPC algorithm, a waveform diversity technique wherein multiple known transmitted waveforms are adaptively pulse compressed using reiterative minimum mean-square error (RMMSE) estimation, has been shown to successfully suppress both range sidelobes and interference from multiple radars operating in the same spectrum. In this paper, we present initial experimental results from the adaptive pulse compression (APC) test bed that demonstrate the ability of MAPC to mitigate both the mutual interference from multiple radars and pulse compression range sidelobes when applied to measured data.\",\"PeriodicalId\":142822,\"journal\":{\"name\":\"2007 International Waveform Diversity and Design Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Waveform Diversity and Design Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WDDC.2007.4339458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Waveform Diversity and Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WDDC.2007.4339458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we present preliminary experimental results demonstrating the ability of the multistatic adaptive pulse compression (MAPC) algorithm to suppress the mutual-interference generated by shared-spectrum radar signals, thus enabling shared-spectrum radar. The MAPC algorithm, a waveform diversity technique wherein multiple known transmitted waveforms are adaptively pulse compressed using reiterative minimum mean-square error (RMMSE) estimation, has been shown to successfully suppress both range sidelobes and interference from multiple radars operating in the same spectrum. In this paper, we present initial experimental results from the adaptive pulse compression (APC) test bed that demonstrate the ability of MAPC to mitigate both the mutual interference from multiple radars and pulse compression range sidelobes when applied to measured data.