自发面部表情分析的一类分类

Zhihong Zeng, Yun Fu, Glenn I. Roisman, Zhen Wen, Yuxiao Hu, Thomas S. Huang
{"title":"自发面部表情分析的一类分类","authors":"Zhihong Zeng, Yun Fu, Glenn I. Roisman, Zhen Wen, Yuxiao Hu, Thomas S. Huang","doi":"10.1109/FGR.2006.83","DOIUrl":null,"url":null,"abstract":"In this paper, we explore one-class classification application in recognizing emotional and nonemotional facial expressions occurred in a realistic human conversation setting - adult attachment interview (AAI). Although emotional facial expressions are defined in terms of facial action units in the psychological study, non-emotional facial expressions have not distinct description. It is difficult and expensive to model non-emotional facial expressions. Thus, we treat this facial expression recognition as a one-class classification problem which is to describe target objects (i.e. emotional facial expressions) and distinguish them from outliers (i. e. non-emotional ones). We first apply Kernel whitening to map the emotional data in a kernel subspace with unit variances in all directions. Then, we use support vector data description (SVDD) for the classification which is to directly fit a boundary with minimal volume around the target data. We present our preliminary experiments on the AAI data, and compare Kernel whitening SVDD with PCA+SVDD and PCA+Gaussian methods","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"One-class classification for spontaneous facial expression analysis\",\"authors\":\"Zhihong Zeng, Yun Fu, Glenn I. Roisman, Zhen Wen, Yuxiao Hu, Thomas S. Huang\",\"doi\":\"10.1109/FGR.2006.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore one-class classification application in recognizing emotional and nonemotional facial expressions occurred in a realistic human conversation setting - adult attachment interview (AAI). Although emotional facial expressions are defined in terms of facial action units in the psychological study, non-emotional facial expressions have not distinct description. It is difficult and expensive to model non-emotional facial expressions. Thus, we treat this facial expression recognition as a one-class classification problem which is to describe target objects (i.e. emotional facial expressions) and distinguish them from outliers (i. e. non-emotional ones). We first apply Kernel whitening to map the emotional data in a kernel subspace with unit variances in all directions. Then, we use support vector data description (SVDD) for the classification which is to directly fit a boundary with minimal volume around the target data. We present our preliminary experiments on the AAI data, and compare Kernel whitening SVDD with PCA+SVDD and PCA+Gaussian methods\",\"PeriodicalId\":109260,\"journal\":{\"name\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Automatic Face and Gesture Recognition (FGR06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGR.2006.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

本文探讨了一类分类方法在成人依恋访谈(adult attachment interview, AAI)中面部表情识别中的应用。虽然在心理学研究中,情绪性面部表情是根据面部动作单位来定义的,但非情绪性面部表情却没有明确的描述。对非情感的面部表情进行建模既困难又昂贵。因此,我们将这种面部表情识别视为一类分类问题,即描述目标对象(即情绪面部表情)并将其与异常值(即非情绪面部表情)区分开来。首先利用核白化技术在核子空间中映射各方向上的单位方差的情感数据。然后,我们使用支持向量数据描述(SVDD)进行分类,即直接在目标数据周围拟合一个体积最小的边界。在AAI数据上进行了初步实验,并将核白化SVDD与PCA+SVDD和PCA+高斯方法进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One-class classification for spontaneous facial expression analysis
In this paper, we explore one-class classification application in recognizing emotional and nonemotional facial expressions occurred in a realistic human conversation setting - adult attachment interview (AAI). Although emotional facial expressions are defined in terms of facial action units in the psychological study, non-emotional facial expressions have not distinct description. It is difficult and expensive to model non-emotional facial expressions. Thus, we treat this facial expression recognition as a one-class classification problem which is to describe target objects (i.e. emotional facial expressions) and distinguish them from outliers (i. e. non-emotional ones). We first apply Kernel whitening to map the emotional data in a kernel subspace with unit variances in all directions. Then, we use support vector data description (SVDD) for the classification which is to directly fit a boundary with minimal volume around the target data. We present our preliminary experiments on the AAI data, and compare Kernel whitening SVDD with PCA+SVDD and PCA+Gaussian methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1