基于独立分量分析的自动脑电信号伪影检测

Amira Echtioui, W. Zouch, M. Ghorbel, M. Slima, A. Hamida, C. Mhiri
{"title":"基于独立分量分析的自动脑电信号伪影检测","authors":"Amira Echtioui, W. Zouch, M. Ghorbel, M. Slima, A. Hamida, C. Mhiri","doi":"10.1109/ATSIP49331.2020.9231574","DOIUrl":null,"url":null,"abstract":"In electroencephalogram (EEG) recordings, physiological and non-physiological artifacts pose many problems. Independent Component Analysis (ICA) is a widely used algorithm for removing different artifacts from EEG signals. It separates data in linearly Independent Components (IC). However, the evaluation and classification of the calculated ICs as an EEG or artifact is not currently automated which requires manual intervention to reject ICs with visually detected artifacts after decomposition. In this paper, we propose a new automated approach for artifacts detection using the ICA algorithm. The best result of mean square error was achieved using SOBI-ICA (Second Order Blind Identification) and ADJUST algorithms. Compared with the existing automated solutions, our approach is not limited to electrode configurations, number of EEG channels, or specific types of artifacts. It provides a practical tool, reliable, automatic, and real-time capable, which avoids the need for the time-consuming manual selection of ICs during artifacts rejection.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automated EEG Artifact Detection Using Independent Component Analysis\",\"authors\":\"Amira Echtioui, W. Zouch, M. Ghorbel, M. Slima, A. Hamida, C. Mhiri\",\"doi\":\"10.1109/ATSIP49331.2020.9231574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In electroencephalogram (EEG) recordings, physiological and non-physiological artifacts pose many problems. Independent Component Analysis (ICA) is a widely used algorithm for removing different artifacts from EEG signals. It separates data in linearly Independent Components (IC). However, the evaluation and classification of the calculated ICs as an EEG or artifact is not currently automated which requires manual intervention to reject ICs with visually detected artifacts after decomposition. In this paper, we propose a new automated approach for artifacts detection using the ICA algorithm. The best result of mean square error was achieved using SOBI-ICA (Second Order Blind Identification) and ADJUST algorithms. Compared with the existing automated solutions, our approach is not limited to electrode configurations, number of EEG channels, or specific types of artifacts. It provides a practical tool, reliable, automatic, and real-time capable, which avoids the need for the time-consuming manual selection of ICs during artifacts rejection.\",\"PeriodicalId\":384018,\"journal\":{\"name\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP49331.2020.9231574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在脑电图(EEG)记录中,生理性和非生理性伪影造成了许多问题。独立分量分析(ICA)是一种广泛应用的去除脑电信号伪影的算法。它将数据分离为线性无关组件(IC)。然而,将计算出的集成电路作为EEG或伪影进行评估和分类目前还不是自动化的,这需要人工干预来拒绝分解后具有视觉检测到的伪影的集成电路。在本文中,我们提出了一种使用ICA算法进行伪影检测的新方法。采用SOBI-ICA(二阶盲识别)和ADJUST算法,均方误差得到了最好的结果。与现有的自动化解决方案相比,我们的方法不局限于电极配置,EEG通道数量或特定类型的工件。它提供了一个实用的、可靠的、自动的和实时的工具,避免了在工件拒绝过程中耗时的人工选择ic的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated EEG Artifact Detection Using Independent Component Analysis
In electroencephalogram (EEG) recordings, physiological and non-physiological artifacts pose many problems. Independent Component Analysis (ICA) is a widely used algorithm for removing different artifacts from EEG signals. It separates data in linearly Independent Components (IC). However, the evaluation and classification of the calculated ICs as an EEG or artifact is not currently automated which requires manual intervention to reject ICs with visually detected artifacts after decomposition. In this paper, we propose a new automated approach for artifacts detection using the ICA algorithm. The best result of mean square error was achieved using SOBI-ICA (Second Order Blind Identification) and ADJUST algorithms. Compared with the existing automated solutions, our approach is not limited to electrode configurations, number of EEG channels, or specific types of artifacts. It provides a practical tool, reliable, automatic, and real-time capable, which avoids the need for the time-consuming manual selection of ICs during artifacts rejection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Recognition of Epileptiform EEG Abnormalities Using Machine Learning Approaches Generation of fuzzy evidence numbers for the evaluation of uncertainty measures Speckle Denoising of the Multipolarization Images by Hybrid Filters Identification of the user by using a hardware device Lightweight Hardware Architectures for the Piccolo Block Cipher in FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1