生物荧光显微镜背景荧光的计算去除

Hao-Chih Lee, Ge Yang
{"title":"生物荧光显微镜背景荧光的计算去除","authors":"Hao-Chih Lee, Ge Yang","doi":"10.1109/ISBI.2014.6867845","DOIUrl":null,"url":null,"abstract":"Background fluorescence is a frequently encountered problem in biological fluorescence microscopy. It often significantly lowers the image signal-to-noise ratio and poses substantial challenges to subsequent computational image analysis. Here we propose a general computational method for separating and removing background fluorescence from a single fluorescence microscopy image. The method is formulated as solving a constrained convex optimization problem and assumes that the background signal is low-rank and additive to the sparse foreground signal. Solution of the optimization problem is found using a forward-backward algorithm. Our method only requires a single image and can be used in a broad range of biological fluorescence applications. We first validate performance of our method using synthetic image data. We then demonstrate applications of the method to actual biological image data.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Computational removal ofbackground fluorescence for biological fluorescence microscopy\",\"authors\":\"Hao-Chih Lee, Ge Yang\",\"doi\":\"10.1109/ISBI.2014.6867845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background fluorescence is a frequently encountered problem in biological fluorescence microscopy. It often significantly lowers the image signal-to-noise ratio and poses substantial challenges to subsequent computational image analysis. Here we propose a general computational method for separating and removing background fluorescence from a single fluorescence microscopy image. The method is formulated as solving a constrained convex optimization problem and assumes that the background signal is low-rank and additive to the sparse foreground signal. Solution of the optimization problem is found using a forward-backward algorithm. Our method only requires a single image and can be used in a broad range of biological fluorescence applications. We first validate performance of our method using synthetic image data. We then demonstrate applications of the method to actual biological image data.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6867845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

背景荧光是生物荧光显微镜中经常遇到的问题。它通常会显著降低图像的信噪比,并对后续的计算图像分析提出了实质性的挑战。在这里,我们提出了一个通用的计算方法分离和消除背景荧光从单一的荧光显微镜图像。该方法被表述为求解一个约束凸优化问题,并假设背景信号是低秩的,并与稀疏的前景信号相加。采用正向-倒向算法求解优化问题。我们的方法只需要一个单一的图像,可用于广泛的生物荧光应用。我们首先使用合成图像数据验证我们的方法的性能。然后,我们演示了该方法在实际生物图像数据中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational removal ofbackground fluorescence for biological fluorescence microscopy
Background fluorescence is a frequently encountered problem in biological fluorescence microscopy. It often significantly lowers the image signal-to-noise ratio and poses substantial challenges to subsequent computational image analysis. Here we propose a general computational method for separating and removing background fluorescence from a single fluorescence microscopy image. The method is formulated as solving a constrained convex optimization problem and assumes that the background signal is low-rank and additive to the sparse foreground signal. Solution of the optimization problem is found using a forward-backward algorithm. Our method only requires a single image and can be used in a broad range of biological fluorescence applications. We first validate performance of our method using synthetic image data. We then demonstrate applications of the method to actual biological image data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1