工艺变化对触发器软错误率影响的对比分析

H. Mostafa, M. Anis, M. Elmasry
{"title":"工艺变化对触发器软错误率影响的对比分析","authors":"H. Mostafa, M. Anis, M. Elmasry","doi":"10.1109/ASQED.2009.5206288","DOIUrl":null,"url":null,"abstract":"Due to CMOS technology scaling, devices are getting smaller, faster, and operating at lower supply voltages. The reduced capacitances and power supply voltages and the increased chip density to perform more functionality result in increasing the soft errors and making them one of the essential design constraints at the same level as delay and power. Even though the impact of process variations on the performance and the power consumption has been investigated by many researchers, its impact on soft errors has not been paid enough attention. This impact is investigated in this paper for 65-nm CMOS technology. The soft error yield is defined in this paper similar to the timing yield and the power yield. This paper shows that the soft error yield of the sense-amplifier based flip flop (SA-FF) is very poor. Therefore, soft error mitigation techniques are required when using this flip-flop topology. The semi-dynamic flip-flop (SD-FF) exhibits the best soft error yield behavior with a very high performance at the expense of large power requirement. Finally, some design insights are proposed to guide flip-flops designers to select the best flip-flop topology that satisfies their specific circuit soft error rate constraints.","PeriodicalId":437303,"journal":{"name":"2009 1st Asia Symposium on Quality Electronic Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comparative analysis of process variation impact on flip-flops soft error rate\",\"authors\":\"H. Mostafa, M. Anis, M. Elmasry\",\"doi\":\"10.1109/ASQED.2009.5206288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to CMOS technology scaling, devices are getting smaller, faster, and operating at lower supply voltages. The reduced capacitances and power supply voltages and the increased chip density to perform more functionality result in increasing the soft errors and making them one of the essential design constraints at the same level as delay and power. Even though the impact of process variations on the performance and the power consumption has been investigated by many researchers, its impact on soft errors has not been paid enough attention. This impact is investigated in this paper for 65-nm CMOS technology. The soft error yield is defined in this paper similar to the timing yield and the power yield. This paper shows that the soft error yield of the sense-amplifier based flip flop (SA-FF) is very poor. Therefore, soft error mitigation techniques are required when using this flip-flop topology. The semi-dynamic flip-flop (SD-FF) exhibits the best soft error yield behavior with a very high performance at the expense of large power requirement. Finally, some design insights are proposed to guide flip-flops designers to select the best flip-flop topology that satisfies their specific circuit soft error rate constraints.\",\"PeriodicalId\":437303,\"journal\":{\"name\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 1st Asia Symposium on Quality Electronic Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASQED.2009.5206288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 1st Asia Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASQED.2009.5206288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于CMOS技术的缩放,器件变得越来越小,越来越快,并且在更低的电源电压下工作。为了实现更多功能而减小的电容和电源电压以及增加的芯片密度导致了软误差的增加,并使其成为与延迟和功率相同级别的基本设计约束之一。尽管许多研究者已经研究了工艺变化对性能和功耗的影响,但其对软误差的影响却没有得到足够的重视。本文对65纳米CMOS技术的影响进行了研究。本文对软误差产生的定义类似于时序产生和功率产生。研究表明,基于传感器放大器的触发器(SA-FF)的软误差产率很差。因此,在使用这种触发器拓扑时,需要使用软错误缓解技术。半动态触发器(SD-FF)表现出最佳的软误差屈服行为,具有很高的性能,但功耗要求很高。最后,提出了一些设计见解,以指导触发器设计者选择满足其特定电路软错误率约束的最佳触发器拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of process variation impact on flip-flops soft error rate
Due to CMOS technology scaling, devices are getting smaller, faster, and operating at lower supply voltages. The reduced capacitances and power supply voltages and the increased chip density to perform more functionality result in increasing the soft errors and making them one of the essential design constraints at the same level as delay and power. Even though the impact of process variations on the performance and the power consumption has been investigated by many researchers, its impact on soft errors has not been paid enough attention. This impact is investigated in this paper for 65-nm CMOS technology. The soft error yield is defined in this paper similar to the timing yield and the power yield. This paper shows that the soft error yield of the sense-amplifier based flip flop (SA-FF) is very poor. Therefore, soft error mitigation techniques are required when using this flip-flop topology. The semi-dynamic flip-flop (SD-FF) exhibits the best soft error yield behavior with a very high performance at the expense of large power requirement. Finally, some design insights are proposed to guide flip-flops designers to select the best flip-flop topology that satisfies their specific circuit soft error rate constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Next generation I/O power delivery design through SIPD co-analysis & comprehensive platform validation Effect of local random variation on gate-level delay and leakage statistical analysis Mutual exploration of FinFET technology and circuit design options for implementing compact brute-force latches Automatic error recovery in targetless logic emulation An automated approach for the diagnosis of multiple faults in FPGA interconnects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1