VIP:多功能推理处理器

Skand Hurkat, José F. Martínez
{"title":"VIP:多功能推理处理器","authors":"Skand Hurkat, José F. Martínez","doi":"10.1109/HPCA.2019.00049","DOIUrl":null,"url":null,"abstract":"We present Versatile Inference Processor (VIP), a highly programmable architecture for machine learning inference. VIP consists of 128 lightweight processing engines employing a vector processing paradigm, with a simple ISA and carefully chosen microarchitecture features. It is coupled with a modern, lightly customized, 3D-stacked memory system. Through detailed execution-driven simulations backed by RTL synthesis, we show that we can achieve online, real-time vision throughput (24 fps), at low power consumption, for both fullHD depth-from-stereo using belief propagation, and VGG-16 and VGG-19 deep neural networks (batch size of 1). Our RTL synthesis of a VIP processing engine in TSMC 28 nm technology, using a commercial standard-cell library supplied by ARM, results in 18 mm2 of silicon area and 3.5 W to 4.8 W of power consumption for all 128 VIP processing engines combined.","PeriodicalId":102050,"journal":{"name":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"VIP: A Versatile Inference Processor\",\"authors\":\"Skand Hurkat, José F. Martínez\",\"doi\":\"10.1109/HPCA.2019.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Versatile Inference Processor (VIP), a highly programmable architecture for machine learning inference. VIP consists of 128 lightweight processing engines employing a vector processing paradigm, with a simple ISA and carefully chosen microarchitecture features. It is coupled with a modern, lightly customized, 3D-stacked memory system. Through detailed execution-driven simulations backed by RTL synthesis, we show that we can achieve online, real-time vision throughput (24 fps), at low power consumption, for both fullHD depth-from-stereo using belief propagation, and VGG-16 and VGG-19 deep neural networks (batch size of 1). Our RTL synthesis of a VIP processing engine in TSMC 28 nm technology, using a commercial standard-cell library supplied by ARM, results in 18 mm2 of silicon area and 3.5 W to 4.8 W of power consumption for all 128 VIP processing engines combined.\",\"PeriodicalId\":102050,\"journal\":{\"name\":\"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2019.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2019.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了多功能推理处理器(VIP),一种高度可编程的机器学习推理架构。VIP由128个轻量级处理引擎组成,采用矢量处理范例,具有简单的ISA和精心选择的微架构功能。它与一个现代的,轻定制的,3d堆叠存储系统相结合。通过RTL合成支持的详细执行驱动仿真,我们表明我们可以在低功耗下实现在线实时视觉吞吐量(24 fps),使用信念传播和VGG-16和VGG-19深度神经网络(批量大小为1)实现全高清立体声深度。我们的RTL合成了台积电28纳米技术的VIP处理引擎,使用ARM提供的商业标准单元库。导致所有128个VIP处理引擎的硅面积为18mm2,功耗为3.5 W至4.8 W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VIP: A Versatile Inference Processor
We present Versatile Inference Processor (VIP), a highly programmable architecture for machine learning inference. VIP consists of 128 lightweight processing engines employing a vector processing paradigm, with a simple ISA and carefully chosen microarchitecture features. It is coupled with a modern, lightly customized, 3D-stacked memory system. Through detailed execution-driven simulations backed by RTL synthesis, we show that we can achieve online, real-time vision throughput (24 fps), at low power consumption, for both fullHD depth-from-stereo using belief propagation, and VGG-16 and VGG-19 deep neural networks (batch size of 1). Our RTL synthesis of a VIP processing engine in TSMC 28 nm technology, using a commercial standard-cell library supplied by ARM, results in 18 mm2 of silicon area and 3.5 W to 4.8 W of power consumption for all 128 VIP processing engines combined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning at Facebook: Understanding Inference at the Edge Understanding the Future of Energy Efficiency in Multi-Module GPUs POWERT Channels: A Novel Class of Covert CommunicationExploiting Power Management Vulnerabilities The Accelerator Wall: Limits of Chip Specialization Featherlight Reuse-Distance Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1