使用Word2Vec进行新闻文章推荐:考虑超参数优化的评估选项和不同的输入选项

Bogdan Walek, Patrik Müller
{"title":"使用Word2Vec进行新闻文章推荐:考虑超参数优化的评估选项和不同的输入选项","authors":"Bogdan Walek, Patrik Müller","doi":"10.1109/Informatics57926.2022.10083395","DOIUrl":null,"url":null,"abstract":"Evaluation of unsupervised and semi-supervised learning methods, especially in the field of information retrieval and recommender systems is a problematic and resource-intensive task. Often, there is no way to evaluate the used machine learning model until user testing is performed. We investigated hyperparameter optimization options of Gensim's Word2Vec implementation by evaluating model performance on word analogies and word pairs tests and statistics of out-of-vocabulary ratio. These automatic and task-independent offline (pre-) evaluations techniques could provide a simple way to reduce the set of final model variants used for resource-demanding user testing or hybrid recommender models, thus we investigated whether those tests were useful for the accuracy of our final task of providing similar articles to a chosen article. We also consider options of using Wikipedia articles for the model training input or the pre-trained FastText model.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Word2Vec for news articles recommendations: Considering evaluation options for hyperparameter optimization and different input options\",\"authors\":\"Bogdan Walek, Patrik Müller\",\"doi\":\"10.1109/Informatics57926.2022.10083395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluation of unsupervised and semi-supervised learning methods, especially in the field of information retrieval and recommender systems is a problematic and resource-intensive task. Often, there is no way to evaluate the used machine learning model until user testing is performed. We investigated hyperparameter optimization options of Gensim's Word2Vec implementation by evaluating model performance on word analogies and word pairs tests and statistics of out-of-vocabulary ratio. These automatic and task-independent offline (pre-) evaluations techniques could provide a simple way to reduce the set of final model variants used for resource-demanding user testing or hybrid recommender models, thus we investigated whether those tests were useful for the accuracy of our final task of providing similar articles to a chosen article. We also consider options of using Wikipedia articles for the model training input or the pre-trained FastText model.\",\"PeriodicalId\":101488,\"journal\":{\"name\":\"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Informatics57926.2022.10083395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Informatics57926.2022.10083395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评估无监督和半监督学习方法,特别是在信息检索和推荐系统领域,是一项有问题且资源密集型的任务。通常,在执行用户测试之前,没有办法评估使用的机器学习模型。通过评价模型在单词类比和单词对测试上的性能以及词汇外率的统计,研究了Gensim的Word2Vec实现的超参数优化选项。这些自动和任务独立的离线(预)评估技术可以提供一种简单的方法来减少用于资源要求高的用户测试或混合推荐模型的最终模型变体集,因此我们研究了这些测试是否有助于我们为所选文章提供类似文章的最终任务的准确性。我们还考虑使用维基百科文章作为模型训练输入或预训练的FastText模型的选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Word2Vec for news articles recommendations: Considering evaluation options for hyperparameter optimization and different input options
Evaluation of unsupervised and semi-supervised learning methods, especially in the field of information retrieval and recommender systems is a problematic and resource-intensive task. Often, there is no way to evaluate the used machine learning model until user testing is performed. We investigated hyperparameter optimization options of Gensim's Word2Vec implementation by evaluating model performance on word analogies and word pairs tests and statistics of out-of-vocabulary ratio. These automatic and task-independent offline (pre-) evaluations techniques could provide a simple way to reduce the set of final model variants used for resource-demanding user testing or hybrid recommender models, thus we investigated whether those tests were useful for the accuracy of our final task of providing similar articles to a chosen article. We also consider options of using Wikipedia articles for the model training input or the pre-trained FastText model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Engineers' Questions and Answers on Stack Exchange Collision detection and response approaches for computer muscle modelling Supervised learning data preprocessing for short-term traffic flow prediction A 1D CNN-based model for IoT anomaly detection using INT data Image steganography with using QR code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1