Shengmin Jin, Richard Wituszynski, Max Caiello-Gingold, R. Zafarani
{"title":"WebShapes:具有3D形状的网络可视化","authors":"Shengmin Jin, Richard Wituszynski, Max Caiello-Gingold, R. Zafarani","doi":"10.1145/3336191.3371867","DOIUrl":null,"url":null,"abstract":"Network visualization has played a critical role in graph analysis, as it not only presents a big picture of a network but also helps reveal the structural information of a network. The most popular visual representation of networks is the node-link diagram. However, visualizing a large network with the node-link diagram can be challenging due to the difficulty in obtaining an optimal graph layout. To address this challenge, a recent advancement in network representation: network shape, allows one to compactly represent a network and its subgraphs with the distribution of their embeddings. Inspired by this research, we have designed a web platform WebShapes that enables researchers and practitioners to visualize their network data as customized 3D shapes (http://b.link/webshapes). Furthermore, we provide a case study on real-world networks to explore the sensitivity of network shapes to different graph sampling, embedding, and fitting methods, and we show examples of understanding networks through their network shapes.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WebShapes: Network Visualization with 3D Shapes\",\"authors\":\"Shengmin Jin, Richard Wituszynski, Max Caiello-Gingold, R. Zafarani\",\"doi\":\"10.1145/3336191.3371867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network visualization has played a critical role in graph analysis, as it not only presents a big picture of a network but also helps reveal the structural information of a network. The most popular visual representation of networks is the node-link diagram. However, visualizing a large network with the node-link diagram can be challenging due to the difficulty in obtaining an optimal graph layout. To address this challenge, a recent advancement in network representation: network shape, allows one to compactly represent a network and its subgraphs with the distribution of their embeddings. Inspired by this research, we have designed a web platform WebShapes that enables researchers and practitioners to visualize their network data as customized 3D shapes (http://b.link/webshapes). Furthermore, we provide a case study on real-world networks to explore the sensitivity of network shapes to different graph sampling, embedding, and fitting methods, and we show examples of understanding networks through their network shapes.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Network visualization has played a critical role in graph analysis, as it not only presents a big picture of a network but also helps reveal the structural information of a network. The most popular visual representation of networks is the node-link diagram. However, visualizing a large network with the node-link diagram can be challenging due to the difficulty in obtaining an optimal graph layout. To address this challenge, a recent advancement in network representation: network shape, allows one to compactly represent a network and its subgraphs with the distribution of their embeddings. Inspired by this research, we have designed a web platform WebShapes that enables researchers and practitioners to visualize their network data as customized 3D shapes (http://b.link/webshapes). Furthermore, we provide a case study on real-world networks to explore the sensitivity of network shapes to different graph sampling, embedding, and fitting methods, and we show examples of understanding networks through their network shapes.