盐胁迫下含硅咸味药用植物的形态生理生化响应

H. Mohammadi, S. Hazrati, L. Parviz
{"title":"盐胁迫下含硅咸味药用植物的形态生理生化响应","authors":"H. Mohammadi, S. Hazrati, L. Parviz","doi":"10.17951/C.2017.72.2.29-40","DOIUrl":null,"url":null,"abstract":"Salt stress is one of the most important factors limiting the growth and yield of plants around the world. However, silicon can reduce the harmful effects of salt stress on plants. For this purpose, an experiment was conducted in a factorial arrangement on randomized complete block design with three replications in a research greenhouse on the Satureja hortensis medicinal plant. Experimental treatments consisted of two salinity levels (control and 100 mM) and potassium silicate (Si) at three levels (0, 1, and 2 mM). The results showed that salinity reduced shoot dry weight, photosynthetic pigments and potassium content of shoot. However, sodium, proline, MDA, and H2O2 contents in shoot increased. The highest shoot dry weight, photosynthetic pigment content, proline, RWC, and the lowest content of MDA and H2O2 of the shoot were observed with Si application under salt stress and non-salt stress conditions. The highest yield of essential oil was also observed with Si application under salt stress and non-salt stress conditions. Therefore, the use of silicon in salt stress condition not only minimizes the harmful effects of salt stress by increasing the K+/Na+ ratio and improving the morphological and physiological traits of the Satureja hortensis medicinal plant but also improves the essential oil yield of this medicinal plant in salt stress and non-salt stress conditions.","PeriodicalId":177112,"journal":{"name":"Annales Universitatis Mariae Curie-Sklodowska, sectio C – Biologia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Morphophysiological and biochemical response of savory medicinal plant using silicon under salt stress\",\"authors\":\"H. Mohammadi, S. Hazrati, L. Parviz\",\"doi\":\"10.17951/C.2017.72.2.29-40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salt stress is one of the most important factors limiting the growth and yield of plants around the world. However, silicon can reduce the harmful effects of salt stress on plants. For this purpose, an experiment was conducted in a factorial arrangement on randomized complete block design with three replications in a research greenhouse on the Satureja hortensis medicinal plant. Experimental treatments consisted of two salinity levels (control and 100 mM) and potassium silicate (Si) at three levels (0, 1, and 2 mM). The results showed that salinity reduced shoot dry weight, photosynthetic pigments and potassium content of shoot. However, sodium, proline, MDA, and H2O2 contents in shoot increased. The highest shoot dry weight, photosynthetic pigment content, proline, RWC, and the lowest content of MDA and H2O2 of the shoot were observed with Si application under salt stress and non-salt stress conditions. The highest yield of essential oil was also observed with Si application under salt stress and non-salt stress conditions. Therefore, the use of silicon in salt stress condition not only minimizes the harmful effects of salt stress by increasing the K+/Na+ ratio and improving the morphological and physiological traits of the Satureja hortensis medicinal plant but also improves the essential oil yield of this medicinal plant in salt stress and non-salt stress conditions.\",\"PeriodicalId\":177112,\"journal\":{\"name\":\"Annales Universitatis Mariae Curie-Sklodowska, sectio C – Biologia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Mariae Curie-Sklodowska, sectio C – Biologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17951/C.2017.72.2.29-40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Mariae Curie-Sklodowska, sectio C – Biologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17951/C.2017.72.2.29-40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

盐胁迫是世界范围内限制植物生长和产量的最重要因素之一。然而,硅可以减少盐胁迫对植物的有害影响。为此,本试验采用随机完全区组设计,采用三次重复的因子设计,在研究温室中对竹属药用植物进行了试验。试验处理包括两个盐度水平(对照和100 mM)和三个盐度水平(0、1和2 mM)的硅酸钾(Si)。结果表明,盐度降低了地上部干重、光合色素和钾含量。但茎部钠、脯氨酸、丙二醛和H2O2含量增加。盐胁迫和非盐胁迫条件下,施硅处理的地上部干重、光合色素含量、脯氨酸、RWC最高,MDA和H2O2含量最低。在盐胁迫和非盐胁迫条件下,施硅可获得最高的精油产量。因此,在盐胁迫条件下施用硅不仅可以通过提高盐胁迫下的K+/Na+比值,改善石斛药用植物的形态和生理性状,最大限度地减少盐胁迫的有害影响,还可以提高石斛药用植物在盐胁迫和非盐胁迫条件下的精油产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Morphophysiological and biochemical response of savory medicinal plant using silicon under salt stress
Salt stress is one of the most important factors limiting the growth and yield of plants around the world. However, silicon can reduce the harmful effects of salt stress on plants. For this purpose, an experiment was conducted in a factorial arrangement on randomized complete block design with three replications in a research greenhouse on the Satureja hortensis medicinal plant. Experimental treatments consisted of two salinity levels (control and 100 mM) and potassium silicate (Si) at three levels (0, 1, and 2 mM). The results showed that salinity reduced shoot dry weight, photosynthetic pigments and potassium content of shoot. However, sodium, proline, MDA, and H2O2 contents in shoot increased. The highest shoot dry weight, photosynthetic pigment content, proline, RWC, and the lowest content of MDA and H2O2 of the shoot were observed with Si application under salt stress and non-salt stress conditions. The highest yield of essential oil was also observed with Si application under salt stress and non-salt stress conditions. Therefore, the use of silicon in salt stress condition not only minimizes the harmful effects of salt stress by increasing the K+/Na+ ratio and improving the morphological and physiological traits of the Satureja hortensis medicinal plant but also improves the essential oil yield of this medicinal plant in salt stress and non-salt stress conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Usnea jørgenseniana Bystr. & Leśniewska sp. nova Usnea (subgen. Usnea, Parmeliaceae) in Sweden Ecological and biological aspekt new locality of Drosera anglica Huds. near Końskich Assessing accuracy of barley yield forecasting with integration of climate variables and support vector regression Diagnosis and treatment of mucosa Candida spp. infections – a review article Panax quinquefolium hairy root extracts and their effect in connections with antibiotics against pathogenic bacteria – preliminary study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1