基于去噪自编码器和循环LSTM网络的监督功率分解新方法

T. S. Wang, T. Ji, M. S. Li
{"title":"基于去噪自编码器和循环LSTM网络的监督功率分解新方法","authors":"T. S. Wang, T. Ji, M. S. Li","doi":"10.1109/DEMPED.2019.8864870","DOIUrl":null,"url":null,"abstract":"Non-intrusive load monitoring (NILM) is a task of estimating the contribution of individual appliance to the overall power consumption by using a set of electrical signals measured by a smart meter. In this paper, we propose a comprehensive and extensible framework based on DNNs. We employ denoising autoencoder (dAE) to reconstruct the power signal of individual appliance from aggregated power consumption, and we use long short term memory (LSTM) network to make sure which appliance the power signal belongs to. We select 5 appliances to validate our method, and the results have shown the advantages of the proposed framework in some aspects compared to hidden Markov models (HMMs) and premier dAE.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A New Approach for Supervised Power Disaggregation by Using a Denoising Autoencoder and Recurrent LSTM Network\",\"authors\":\"T. S. Wang, T. Ji, M. S. Li\",\"doi\":\"10.1109/DEMPED.2019.8864870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-intrusive load monitoring (NILM) is a task of estimating the contribution of individual appliance to the overall power consumption by using a set of electrical signals measured by a smart meter. In this paper, we propose a comprehensive and extensible framework based on DNNs. We employ denoising autoencoder (dAE) to reconstruct the power signal of individual appliance from aggregated power consumption, and we use long short term memory (LSTM) network to make sure which appliance the power signal belongs to. We select 5 appliances to validate our method, and the results have shown the advantages of the proposed framework in some aspects compared to hidden Markov models (HMMs) and premier dAE.\",\"PeriodicalId\":397001,\"journal\":{\"name\":\"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2019.8864870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

非侵入式负荷监测(NILM)是一项利用智能电表测量的一组电信号来估计单个电器对整体功耗的贡献的任务。在本文中,我们提出了一个基于深度神经网络的全面和可扩展的框架。我们采用去噪自编码器(dAE)从总功耗中重构出单个设备的功率信号,并使用长短期记忆(LSTM)网络来确定功率信号属于哪个设备。我们选择了5个应用来验证我们的方法,结果表明,与隐马尔可夫模型(hmm)和premier dAE相比,我们提出的框架在某些方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Approach for Supervised Power Disaggregation by Using a Denoising Autoencoder and Recurrent LSTM Network
Non-intrusive load monitoring (NILM) is a task of estimating the contribution of individual appliance to the overall power consumption by using a set of electrical signals measured by a smart meter. In this paper, we propose a comprehensive and extensible framework based on DNNs. We employ denoising autoencoder (dAE) to reconstruct the power signal of individual appliance from aggregated power consumption, and we use long short term memory (LSTM) network to make sure which appliance the power signal belongs to. We select 5 appliances to validate our method, and the results have shown the advantages of the proposed framework in some aspects compared to hidden Markov models (HMMs) and premier dAE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rotating HF signal injection method improvement based on robust phase-shift estimator for self-sensing control of IPMSM Transient analysis of the external magnetic field via MUSIC methods for the diagnosis of electromechanical faults in induction motors Optimization of magnetic flux paths in transverse flux machines through the use of iron wire wound materials A Survey of Multi-Sensor Systems for Online Fault Detection of Electric Machines On-line Transmission Line Fault Classification using Long Short-Term Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1