在QoS-Less HPC存储上控制I/O变化:应用程序可以做些什么?

Zhenbo Qiao, Qing Liu, N. Podhorszki, S. Klasky, Jieyang Chen
{"title":"在QoS-Less HPC存储上控制I/O变化:应用程序可以做些什么?","authors":"Zhenbo Qiao, Qing Liu, N. Podhorszki, S. Klasky, Jieyang Chen","doi":"10.1109/SC41405.2020.00015","DOIUrl":null,"url":null,"abstract":"As high-performance computing (HPC) is being scaled up to exascale to accommodate new modeling and simulation needs, I/O has continued to be a major bottleneck in the end-to-end scientific processes. Nevertheless, prior work in this area mostly aimed to maximize the average performance, and there has been a lack of study and solutions that can manage I/O performance variation on HPC systems. This work aims to take advantage of the storage characteristics and explore application level solutions that are interference-aware. In particular, we monitor the performance of data analytics and estimate the state of shared storage resources using discrete fourier transform (DFT). If heavy I/O interference is predicted to occur at a given timestep, data analytics can dynamically adapt to the environment by lowering the accuracy and performing partial or no augmentation from the shared storage, dictated by an augmentation-bandwidth plot. We evaluate three data analytics, XGC, GenASiS, and Jet, on Chameleon, and quantitatively demonstrate that both the average and variation of I/O performance can be vastly improved using our dynamic augmentation, with the mean and variance improved by as much as 67% and 96%, respectively, while maintaining acceptable outcome of data analysis.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Taming I/O Variation on QoS-Less HPC Storage: What Can Applications Do?\",\"authors\":\"Zhenbo Qiao, Qing Liu, N. Podhorszki, S. Klasky, Jieyang Chen\",\"doi\":\"10.1109/SC41405.2020.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As high-performance computing (HPC) is being scaled up to exascale to accommodate new modeling and simulation needs, I/O has continued to be a major bottleneck in the end-to-end scientific processes. Nevertheless, prior work in this area mostly aimed to maximize the average performance, and there has been a lack of study and solutions that can manage I/O performance variation on HPC systems. This work aims to take advantage of the storage characteristics and explore application level solutions that are interference-aware. In particular, we monitor the performance of data analytics and estimate the state of shared storage resources using discrete fourier transform (DFT). If heavy I/O interference is predicted to occur at a given timestep, data analytics can dynamically adapt to the environment by lowering the accuracy and performing partial or no augmentation from the shared storage, dictated by an augmentation-bandwidth plot. We evaluate three data analytics, XGC, GenASiS, and Jet, on Chameleon, and quantitatively demonstrate that both the average and variation of I/O performance can be vastly improved using our dynamic augmentation, with the mean and variance improved by as much as 67% and 96%, respectively, while maintaining acceptable outcome of data analysis.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着高性能计算(HPC)被扩展到百亿亿次以适应新的建模和仿真需求,I/O仍然是端到端科学流程的主要瓶颈。然而,该领域的先前工作主要是为了最大化平均性能,并且缺乏能够管理HPC系统上I/O性能变化的研究和解决方案。这项工作旨在利用存储特性并探索干扰感知的应用层解决方案。特别是,我们监控数据分析的性能,并使用离散傅立叶变换(DFT)估计共享存储资源的状态。如果预测在给定的时间步长会发生严重的I/O干扰,数据分析可以动态地适应环境,方法是降低准确性,并根据增强带宽图对共享存储执行部分或不执行增强。我们在变色龙上评估了三种数据分析,XGC, GenASiS和Jet,并定量地证明了使用我们的动态增强可以极大地提高I/O性能的平均值和变化,平均值和方差分别提高了67%和96%,同时保持了可接受的数据分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Taming I/O Variation on QoS-Less HPC Storage: What Can Applications Do?
As high-performance computing (HPC) is being scaled up to exascale to accommodate new modeling and simulation needs, I/O has continued to be a major bottleneck in the end-to-end scientific processes. Nevertheless, prior work in this area mostly aimed to maximize the average performance, and there has been a lack of study and solutions that can manage I/O performance variation on HPC systems. This work aims to take advantage of the storage characteristics and explore application level solutions that are interference-aware. In particular, we monitor the performance of data analytics and estimate the state of shared storage resources using discrete fourier transform (DFT). If heavy I/O interference is predicted to occur at a given timestep, data analytics can dynamically adapt to the environment by lowering the accuracy and performing partial or no augmentation from the shared storage, dictated by an augmentation-bandwidth plot. We evaluate three data analytics, XGC, GenASiS, and Jet, on Chameleon, and quantitatively demonstrate that both the average and variation of I/O performance can be vastly improved using our dynamic augmentation, with the mean and variance improved by as much as 67% and 96%, respectively, while maintaining acceptable outcome of data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1