{"title":"碳钢节流体的腐蚀-侵蚀","authors":"P. Ogden","doi":"10.31399/asm.fach.modes.c9001013","DOIUrl":null,"url":null,"abstract":"\n A wall section of a carbon steel choke body in gas service at 4400 psig blew out three months after the use of a corrosion inhibitor was stopped. Corrosion damage occurred in ripples, leaving both smoothly polished and unattacked areas. The corrodent in condensate wells was principally carbon dioxide dissolved in water condensed from the gas stream, with organic acids possibly an aggravating factor. A gas analysis showed no other corrosive agents. No metallurgical or fabrication defects were found in the carbon steel part. The mode of attack was corrosion-erosion, caused by the corrosive, high velocity gas flow. The corrosion rate of either the inhibited or uninhibited gas stream was too high for equipment in high pressure gas service. Type 410 (12% Cr) stainless steel was recommended for the choke bodies because other equipment such as valves made of type 410 showed no evidence of corrosion damage after three years' exposure. This change was made five years ago and there have been no failures since.","PeriodicalId":231268,"journal":{"name":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion-Erosion of a Carbon Steel Choke Body\",\"authors\":\"P. Ogden\",\"doi\":\"10.31399/asm.fach.modes.c9001013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A wall section of a carbon steel choke body in gas service at 4400 psig blew out three months after the use of a corrosion inhibitor was stopped. Corrosion damage occurred in ripples, leaving both smoothly polished and unattacked areas. The corrodent in condensate wells was principally carbon dioxide dissolved in water condensed from the gas stream, with organic acids possibly an aggravating factor. A gas analysis showed no other corrosive agents. No metallurgical or fabrication defects were found in the carbon steel part. The mode of attack was corrosion-erosion, caused by the corrosive, high velocity gas flow. The corrosion rate of either the inhibited or uninhibited gas stream was too high for equipment in high pressure gas service. Type 410 (12% Cr) stainless steel was recommended for the choke bodies because other equipment such as valves made of type 410 showed no evidence of corrosion damage after three years' exposure. This change was made five years ago and there have been no failures since.\",\"PeriodicalId\":231268,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.modes.c9001013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Failure Modes and Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.modes.c9001013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A wall section of a carbon steel choke body in gas service at 4400 psig blew out three months after the use of a corrosion inhibitor was stopped. Corrosion damage occurred in ripples, leaving both smoothly polished and unattacked areas. The corrodent in condensate wells was principally carbon dioxide dissolved in water condensed from the gas stream, with organic acids possibly an aggravating factor. A gas analysis showed no other corrosive agents. No metallurgical or fabrication defects were found in the carbon steel part. The mode of attack was corrosion-erosion, caused by the corrosive, high velocity gas flow. The corrosion rate of either the inhibited or uninhibited gas stream was too high for equipment in high pressure gas service. Type 410 (12% Cr) stainless steel was recommended for the choke bodies because other equipment such as valves made of type 410 showed no evidence of corrosion damage after three years' exposure. This change was made five years ago and there have been no failures since.