{"title":"规则头波中船舶阻力和垂直运动预测的数值模拟","authors":"A. Bekhit, A. Lungu","doi":"10.1115/omae2019-95237","DOIUrl":null,"url":null,"abstract":"\n The present study is concerned with predicting the resistance and vertical motions of the surface combatant DTMB5512 ship model in regular head waves. A series of numerical simulations are performed for various wave lengths, heights and different ship speeds. Computations are performed by making use of the ISIS-CFD solver of the commercial software Fine™/Marine provided by NUMECA, where the discretization in space is based on finite volume method using unstructured grid. The unsteady Reynolds-Averaged Navier-Stokes equations are numerically solved while the turbulence is modeled by making use of the k-ω SST model. The free-surface is captured through an air-water interface based on the Volume of Fluid (VOF) method. Computed results are validated through direct comparisons with the experimental data provided by IIHR test cases. For the sake of numerical results verification, a grid convergence study is performed on four computational grids and a time step convergence test is also included. Validation of the numerical results shows a reasonable agreement with the experimental data.","PeriodicalId":345141,"journal":{"name":"Volume 2: CFD and FSI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Simulation for Predicting Ship Resistance and Vertical Motions in Regular Head Waves\",\"authors\":\"A. Bekhit, A. Lungu\",\"doi\":\"10.1115/omae2019-95237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The present study is concerned with predicting the resistance and vertical motions of the surface combatant DTMB5512 ship model in regular head waves. A series of numerical simulations are performed for various wave lengths, heights and different ship speeds. Computations are performed by making use of the ISIS-CFD solver of the commercial software Fine™/Marine provided by NUMECA, where the discretization in space is based on finite volume method using unstructured grid. The unsteady Reynolds-Averaged Navier-Stokes equations are numerically solved while the turbulence is modeled by making use of the k-ω SST model. The free-surface is captured through an air-water interface based on the Volume of Fluid (VOF) method. Computed results are validated through direct comparisons with the experimental data provided by IIHR test cases. For the sake of numerical results verification, a grid convergence study is performed on four computational grids and a time step convergence test is also included. Validation of the numerical results shows a reasonable agreement with the experimental data.\",\"PeriodicalId\":345141,\"journal\":{\"name\":\"Volume 2: CFD and FSI\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: CFD and FSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: CFD and FSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文研究了水面战舰DTMB5512舰模在常规头浪中阻力和垂直运动的预测问题。在不同波长、不同高度和不同航速条件下进行了一系列数值模拟。利用NUMECA提供的商业软件Fine™/Marine的ISIS-CFD求解器进行计算,其中空间离散是基于使用非结构化网格的有限体积法。对非定常reynolds - average Navier-Stokes方程进行了数值求解,并利用k-ω海表温度模型对湍流进行了模拟。自由表面通过基于流体体积(VOF)方法的空气-水界面捕获。通过与IIHR测试用例提供的实验数据的直接比较,验证了计算结果。为了验证数值结果,在四个计算网格上进行了网格收敛性研究,并进行了时间步长收敛性测试。数值计算结果与实验数据吻合较好。
Numerical Simulation for Predicting Ship Resistance and Vertical Motions in Regular Head Waves
The present study is concerned with predicting the resistance and vertical motions of the surface combatant DTMB5512 ship model in regular head waves. A series of numerical simulations are performed for various wave lengths, heights and different ship speeds. Computations are performed by making use of the ISIS-CFD solver of the commercial software Fine™/Marine provided by NUMECA, where the discretization in space is based on finite volume method using unstructured grid. The unsteady Reynolds-Averaged Navier-Stokes equations are numerically solved while the turbulence is modeled by making use of the k-ω SST model. The free-surface is captured through an air-water interface based on the Volume of Fluid (VOF) method. Computed results are validated through direct comparisons with the experimental data provided by IIHR test cases. For the sake of numerical results verification, a grid convergence study is performed on four computational grids and a time step convergence test is also included. Validation of the numerical results shows a reasonable agreement with the experimental data.