使用基于密度的聚类的参数规划缓存

Günes Aluç, David DeHaan, Ivan T. Bowman
{"title":"使用基于密度的聚类的参数规划缓存","authors":"Günes Aluç, David DeHaan, Ivan T. Bowman","doi":"10.1109/ICDE.2012.57","DOIUrl":null,"url":null,"abstract":"Query plan caching eliminates the need for repeated query optimization, hence, it has strong practical implications for relational database management systems (RDBMSs). Unfortunately, existing approaches consider only the query plan generated at the expected values of parameters that characterize the query, data and the current state of the system, while these parameters may take different values during the lifetime of a cached plan. A better alternative is to harvest the optimizer's plan choice for different parameter values, populate the cache with promising query plans, and select a cached plan based upon current parameter values. To address this challenge, we propose a parametric plan caching (PPC) framework that uses an online plan space clustering algorithm. The clustering algorithm is density-based, and it exploits locality-sensitive hashing as a pre-processing step so that clusters in the plan spaces can be efficiently stored in database histograms and queried in constant time. We experimentally validate that our approach is precise, efficient in space-and-time and adaptive, requiring no eager exploration of the plan spaces of the optimizer.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Parametric Plan Caching Using Density-Based Clustering\",\"authors\":\"Günes Aluç, David DeHaan, Ivan T. Bowman\",\"doi\":\"10.1109/ICDE.2012.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query plan caching eliminates the need for repeated query optimization, hence, it has strong practical implications for relational database management systems (RDBMSs). Unfortunately, existing approaches consider only the query plan generated at the expected values of parameters that characterize the query, data and the current state of the system, while these parameters may take different values during the lifetime of a cached plan. A better alternative is to harvest the optimizer's plan choice for different parameter values, populate the cache with promising query plans, and select a cached plan based upon current parameter values. To address this challenge, we propose a parametric plan caching (PPC) framework that uses an online plan space clustering algorithm. The clustering algorithm is density-based, and it exploits locality-sensitive hashing as a pre-processing step so that clusters in the plan spaces can be efficiently stored in database histograms and queried in constant time. We experimentally validate that our approach is precise, efficient in space-and-time and adaptive, requiring no eager exploration of the plan spaces of the optimizer.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

查询计划缓存消除了重复查询优化的需要,因此,它对关系数据库管理系统(rdbms)具有很强的实际意义。不幸的是,现有的方法只考虑在参数的期望值下生成的查询计划,这些参数表征查询、数据和系统的当前状态,而这些参数在缓存计划的生命周期内可能采用不同的值。更好的替代方法是获取优化器对不同参数值的计划选择,用有希望的查询计划填充缓存,并根据当前参数值选择缓存的计划。为了解决这一挑战,我们提出了一个使用在线规划空间聚类算法的参数规划缓存(PPC)框架。聚类算法是基于密度的,它利用位置敏感的散列作为预处理步骤,使规划空间中的聚类可以有效地存储在数据库直方图中,并在恒定时间内查询。实验结果表明,该方法具有精确、高效、自适应的特点,无需对优化器的规划空间进行探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parametric Plan Caching Using Density-Based Clustering
Query plan caching eliminates the need for repeated query optimization, hence, it has strong practical implications for relational database management systems (RDBMSs). Unfortunately, existing approaches consider only the query plan generated at the expected values of parameters that characterize the query, data and the current state of the system, while these parameters may take different values during the lifetime of a cached plan. A better alternative is to harvest the optimizer's plan choice for different parameter values, populate the cache with promising query plans, and select a cached plan based upon current parameter values. To address this challenge, we propose a parametric plan caching (PPC) framework that uses an online plan space clustering algorithm. The clustering algorithm is density-based, and it exploits locality-sensitive hashing as a pre-processing step so that clusters in the plan spaces can be efficiently stored in database histograms and queried in constant time. We experimentally validate that our approach is precise, efficient in space-and-time and adaptive, requiring no eager exploration of the plan spaces of the optimizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1