{"title":"解决大型网络上计算密集型问题的体系结构风格","authors":"Yuriy Brun, N. Medvidović","doi":"10.1109/SEAMS.2007.4","DOIUrl":null,"url":null,"abstract":"Large networks, such as the Internet, pose an ideal medium for solving computationally intensive problems, such as NP-complete problems, yet no well-scaling architecture for computational Internet-sized systems exists. We propose a software architectural style for large networks, based on a formal mathematical study of crystal growth that will exhibit properties of (1) discreetness (nodes on the network cannot learn the algorithm or input of the computation), (2) fault-tolerance (malicious, faulty, and unstable nodes may not break the computation), and (3) scalability (communication among the nodes does not increase with network or problem size).","PeriodicalId":354701,"journal":{"name":"International Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS '07)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"An Architectural Style for Solving Computationally Intensive Problems on Large Networks\",\"authors\":\"Yuriy Brun, N. Medvidović\",\"doi\":\"10.1109/SEAMS.2007.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large networks, such as the Internet, pose an ideal medium for solving computationally intensive problems, such as NP-complete problems, yet no well-scaling architecture for computational Internet-sized systems exists. We propose a software architectural style for large networks, based on a formal mathematical study of crystal growth that will exhibit properties of (1) discreetness (nodes on the network cannot learn the algorithm or input of the computation), (2) fault-tolerance (malicious, faulty, and unstable nodes may not break the computation), and (3) scalability (communication among the nodes does not increase with network or problem size).\",\"PeriodicalId\":354701,\"journal\":{\"name\":\"International Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS '07)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAMS.2007.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAMS.2007.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Architectural Style for Solving Computationally Intensive Problems on Large Networks
Large networks, such as the Internet, pose an ideal medium for solving computationally intensive problems, such as NP-complete problems, yet no well-scaling architecture for computational Internet-sized systems exists. We propose a software architectural style for large networks, based on a formal mathematical study of crystal growth that will exhibit properties of (1) discreetness (nodes on the network cannot learn the algorithm or input of the computation), (2) fault-tolerance (malicious, faulty, and unstable nodes may not break the computation), and (3) scalability (communication among the nodes does not increase with network or problem size).