基于线性翻译特征的神经网络设计与分析

Jiasen Wang, Jun Wang, Wei Zhang
{"title":"基于线性翻译特征的神经网络设计与分析","authors":"Jiasen Wang, Jun Wang, Wei Zhang","doi":"10.1109/ICICIP47338.2019.9012159","DOIUrl":null,"url":null,"abstract":"In this paper, neural networks based on linearly translated features (LTFs) are presented. LTFs including uniform, non-uniform, and multiple translation vectors are embedded into feedforward neural networks. Learning algorithms are presented for the neural networks. Learning capabilities of the neural networks are analyzed. Experimental results on approximation’ identification, and evaluation problems are reported to substantiate the efficacy of the neural networks and learning algorithms.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"60 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Neural Networks Based on Linearly Translated Features\",\"authors\":\"Jiasen Wang, Jun Wang, Wei Zhang\",\"doi\":\"10.1109/ICICIP47338.2019.9012159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, neural networks based on linearly translated features (LTFs) are presented. LTFs including uniform, non-uniform, and multiple translation vectors are embedded into feedforward neural networks. Learning algorithms are presented for the neural networks. Learning capabilities of the neural networks are analyzed. Experimental results on approximation’ identification, and evaluation problems are reported to substantiate the efficacy of the neural networks and learning algorithms.\",\"PeriodicalId\":431872,\"journal\":{\"name\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"60 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP47338.2019.9012159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于线性翻译特征的神经网络。ltf包括均匀、非均匀和多个平移向量嵌入到前馈神经网络中。提出了神经网络的学习算法。分析了神经网络的学习能力。在逼近识别和评估问题上的实验结果证实了神经网络和学习算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Analysis of Neural Networks Based on Linearly Translated Features
In this paper, neural networks based on linearly translated features (LTFs) are presented. LTFs including uniform, non-uniform, and multiple translation vectors are embedded into feedforward neural networks. Learning algorithms are presented for the neural networks. Learning capabilities of the neural networks are analyzed. Experimental results on approximation’ identification, and evaluation problems are reported to substantiate the efficacy of the neural networks and learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Robot Autonomous Exploration and Navigation in Large-scale Indoor Environments Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification Sparse Coding with Outliers A Novel Fuzzy Logic Control on the FVVT Lift of Internal Combustion Engine Adaptive Fuzzy Compensation Control of MIMO Stochastic Nonlinear Systems with Input Hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1