基于动态障碍物检测和速度障碍物估计的自主移动机器人成本图生成

Chin-Sheng Chen, Si-Yu Lin
{"title":"基于动态障碍物检测和速度障碍物估计的自主移动机器人成本图生成","authors":"Chin-Sheng Chen, Si-Yu Lin","doi":"10.23919/ICCAS52745.2021.9649733","DOIUrl":null,"url":null,"abstract":"The environmental conditions corresponding to dangerous or collided areas are generally represented by Costmap when the Autonomous Mobile Robot (AMR) is navigated. Here, this paper provides a Costmap 2D layer plug-in, Velocity Obstacle layer, it can accurately detect obstacle's coordination and radius and then estimate the obstacle's velocity to create Velocity Obstacle which can represent the potential collision vector in the future. In the simulation, we assume the robot's max velocity is 0.2m/s and an obstacle move forward to the robot with 0.3m/s. The results show the AMR can avoid the obstacle well. In experiment, the AMR also can avoid the people moving toward it in the real world.","PeriodicalId":411064,"journal":{"name":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Costmap Generation Based on Dynamic Obstacle Detection and Velocity Obstacle Estimation for Autonomous Mobile Robot\",\"authors\":\"Chin-Sheng Chen, Si-Yu Lin\",\"doi\":\"10.23919/ICCAS52745.2021.9649733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The environmental conditions corresponding to dangerous or collided areas are generally represented by Costmap when the Autonomous Mobile Robot (AMR) is navigated. Here, this paper provides a Costmap 2D layer plug-in, Velocity Obstacle layer, it can accurately detect obstacle's coordination and radius and then estimate the obstacle's velocity to create Velocity Obstacle which can represent the potential collision vector in the future. In the simulation, we assume the robot's max velocity is 0.2m/s and an obstacle move forward to the robot with 0.3m/s. The results show the AMR can avoid the obstacle well. In experiment, the AMR also can avoid the people moving toward it in the real world.\",\"PeriodicalId\":411064,\"journal\":{\"name\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS52745.2021.9649733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS52745.2021.9649733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自主移动机器人(Autonomous Mobile Robot, AMR)导航时,危险或碰撞区域对应的环境条件通常由Costmap表示。在这里,本文提供了一个Costmap的二维图层插件Velocity Obstacle layer,它可以准确地检测障碍物的协调和半径,然后估计障碍物的速度来创建Velocity Obstacle,从而代表未来可能发生的碰撞向量。在仿真中,我们假设机器人的最大速度为0.2m/s,障碍物以0.3m/s的速度向机器人移动。结果表明,AMR能很好地避开障碍物。在实验中,AMR也可以避免人们在现实世界中向它移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Costmap Generation Based on Dynamic Obstacle Detection and Velocity Obstacle Estimation for Autonomous Mobile Robot
The environmental conditions corresponding to dangerous or collided areas are generally represented by Costmap when the Autonomous Mobile Robot (AMR) is navigated. Here, this paper provides a Costmap 2D layer plug-in, Velocity Obstacle layer, it can accurately detect obstacle's coordination and radius and then estimate the obstacle's velocity to create Velocity Obstacle which can represent the potential collision vector in the future. In the simulation, we assume the robot's max velocity is 0.2m/s and an obstacle move forward to the robot with 0.3m/s. The results show the AMR can avoid the obstacle well. In experiment, the AMR also can avoid the people moving toward it in the real world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta Reinforcement Learning Based Underwater Manipulator Control Object Detection and Tracking System with Improved DBSCAN Clustering using Radar on Unmanned Surface Vehicle A Method for Evaluating of Asymmetry on Cleft Lip Using Symmetry Plane Average Blurring-based Anomaly Detection for Vision-based Mask Inspection Systems Design and Fabrication of a Robotic Knee-Type Prosthetic Leg with a Two-Way Hydraulic Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1